Утилизация сточных вод при производстве крахмала. Устройство для улавливания крахмала и очисток из сточных вод картофелечисток периодическогодействия. Расчет барабанного вакуум-фильтра для обезвоживания глютена

Благодаря разнообразию своих свойств, способности к их изменениям крахмал применяют в разных пищевых производствах (кондитерском, хлебопекарном, колбасном и др.), в кулинарии, для выработки крахмалопродуктов, в непищевых отраслях (парфюмерной, текстильной и др).

Калорийность 100г крахмала 350 ккал. В клетках растений крахмал находится в виде плотных образований, называемых крахмальными зернами. Крахмальные зерна разных растений характеризуются определенной формой, строением, размерами. По этим признакам можно установить вид крахмала. Крахмал можно изготовить, используя различное растительное сырье. При этом технология производства немного различна. В данной статье мы опишем технологию производства крахмала из картофеля и кукурузы.

Производство картофельного крахмала

От грязи и посторонних включений картофель отмывают на картофелемойке, потом подают на измельчение. Чем сильнее он будет измельчен, тем полнее будет выход крахмала из клеток, но при этом важно не повредить сами зерна крахмала. Сначала картофель двукратно измельчают на скоростных картофелетерках. Принцип их действия заключается в истирании клубней между рабочими поверхностями, образованными закрепленными на вращающемся барабане пилками с мелкими зубьями. На терках первого измельчения пилки выступают над поверхностью барабана на 1,5…1,7 мм, на терках второго измельчения - не более 1 мм. При втором измельчении дополнительно извлекают 3…5 % крахмала. Качество измельчения также зависит от состояния картофеля (свежий картофель измельчается лучше, чем мороженый или вялый).

После измельчения клубней, обеспечивающего раскрытия большей части клеток, получают смесь, состоящую из крахмала, почти полностью разрушенных клеточных оболочек, некоторого количества неразрушенных клеток и картофельного сока. Эту смесь называют картофельной кашкой. Крахмал, оставшийся в неразорванных клетках, теряется с побочным продуктом производства - картофельной мезгой. Этот крахмал принято называть связанным , а выделенный из клубней картофеля - свободным. Степень измельчения картофеля оценивают коэффициентом измельчения , который характеризует полноту разрушения клеток и количество извлечения крахмала. Его определяют отношением свободного крахмала в кашке к общему содержанию крахмала в картофеле. При нормальной работе он не должен быть меньше 90 %. Для повышения качества крахмала, его белизны и предупреждения развития микроорганизмов в картофельную кашку добавляют диоксид серы или сернистую кислоту.

В состав азотистых веществ сока входит тирозин, который под действием фермента тирозиназы окисляется с образованием окрашенных соединений, которые могут сорбироваться зернами крахмала и снижать белизну готовой продукции. Поэтому сок отделяют от кашки сразу же после измельчения. Для выделения песка из крахмальной суспензии и отделения мезги с картофельным соком используют гидроциклоны. Принцип их действия основан на возникающей при вращении центробежной силе. В результате обработки получают суспензию крахмала концентрацией 37…40 %. Ее называют сырым картофельным крахмалом.

Для высушивания крахмала наиболее часто используют непрерывно действующие пневматические сушилки разной конструкции. В основу их работы положен принцип сушки разрыхленного крахмала в движущемся потоке горячего воздуха. Выход готового крахмала зависит от содержания его в перерабатываемом картофеле и от потерь крахмала с побочными продуктами и сточными водами. В связи с этим содержание крахмала в картофеле, поступающем на переработку, нормировано стандартом и должно составлять не менее 13…15 %, в зависимости от зоны возделывания.

При производстве крахмала предусмотрен его выпуск в двух формах: сухой и сырой картофельный крахмал. Количество сырого картофельного крахмала определяют в соответствии с ОСТ 10-103-88. Различают сырой крахмал марки А и марки В с влажностью 38 и 50 % соответственно. В зависимости от качества (цвета, наличия вкраплении, постороннего запаха) сырой крахмал подразделяют на три сорта - первый второй и третий. Сырой крахмал - скоропортящийся продукт и длительному хранению не подлежит, для консервации можно использовать диоксид серы 0,05 %-ной концентрации.

Сухой крахмал фасуют в мешки и мелкую упаковку. Картофельный крахмал упаковывают в двойные тканевые или бумажные мешки, а также мешки с полиэтиленовыми вкладышами массой не более 50 кг. По качеству крахмал, в соответствии с требованиями ГОСТ 7699-78 «Крахмал картофельный» подразделяют на следующие сорта: «Экстра», высший, первый и второй. Влажность крахмала должна быть 17…20 %, содержание золы 0,3…1,0 %, кислотность 6…20 ° в зависимости от сорта. Содержание сернистого ангидрида не более 0,005 %. Важный показатель, характеризующий чистоту и белизну крахмала, - количество крапин на 1 квадратный дм при рассмотрении невооруженным глазом. Для «Экстра» - 80, для высшего - 280, для первого - 700, для второго не нормируется. Крахмал второго сорта предназначен только для технических целей и промышленной переработки. Гарантийный срок хранения крахмала 2 года со дня выработки при относительной влажности воздуха не более 75 %.

Производство кукурузного крахмала

В общих чертах, процесс переработки кукурузы можно описать так: очищенная кукуруза размягчается в горячей воде, содержащей серу. При грубом помоле отделяется зародыш, а при тонком разделяются клетчатка и крахмал. Сход с мельниц очищается от глютена и многократно промывается в гидроциклонах для удаления последних следов протеина и получения качественного крахмала.

ОЧИСТКА. Сырьём для мокрого помола является обмолоченная кукуруза. Зерно проверяют и удаляют початки, солому, пыль и инородные материалы. Обычно очистка проводится дважды перед помолом. После второй очистки кукурузу делят на порции по весу и закладывают в бункеры. Из бункеров она гидравлически подаётся в замочные чаны.

ЗАМАЧИВАНИЕ. Правильное замачивание является необходимым условием высокого выхода и хорошего качества крахмала. Замачивание проводится в непрерывном противоточном процессе. Очищенная кукуруза загружается в батарею больших замочных ёмкостей (чанов), где она набухает в горячей воде около пятидесяти часов. Фактически, замачивание является контролируемой ферментацией, и добавление 1000-2000 ppm диоксида серы в замочную воду помогает управлять этой ферментацией. Замачивание в присутствии диоксида серы направляет ферментацию посредством ускорения роста благоприятных микроорганизмов, предпочтительно лактобактерий, с одновременным подавлением вредных бактерий, плесени, грибков и дрожжей. Растворимые вещества экстрагируются, а зёрна размягчаются. Зёрна увеличиваются в объёме более чем вдвое, содержание влаги в них возрастает примерно с15% до 45%.

Схема замачивания зерна на заводе мощностью 150 тонн кукурузы в день


ВЫПАРИВАНИЕ ЗАМОЧНОЙ ВОДЫ. Замочную воду сливают с зерна и конденсируют в многоступенчатой выпарной установке. Большинство органических кислот, образующихся во время ферментации, летучи и испаряются вместе с водой. Следовательно, конденсат с первой ступени выпарной установки необходимо нейтрализовать после утилизации тепла подогревом воды, поступающей на замачивание. Истощённая замочная вода, содержащая 6-7% сухих веществ, непрерывно отводится для последующей концентрации. Замочная вода конденсируется в самостерильный продукт - питательное вещество для микробиологической промышленности, или концентрируется приблизительно до 48% сухих веществ и смешивается и высушивается вместе с клетчаткой.

ПРОИЗВОДСТВО SO2. Для замачивания и размягчения кукурузного зерна и управления микробиологической активностью в течение процесса применяют сернистую кислоту. Диоксид серы получают, сжигая серу и поглощая образующийся газ водой. Абсорбция происходит в абсорбционных колоннах, где газ орошается водяными брызгами. Сернистая кислота собирается в промежуточные ёмкости. Диоксид серы можно также хранить в стальных баллонах под давлением.

ОТДЕЛЕНИЕ ЗАРОДЫША . Размягчённые зёрна разрушаются на абразивных мельницах для снятия оболочки и разрушения связей между зародышем и эндоспермом. Для поддержания процесса мокрого помола добавляется вода. Хорошее замачивание гарантирует свободное отделение неповреждённого зародыша от зёрен в процессе мягкого помола без выделения масла. Масло составляет половину веса зародыша на этой стадии, и зародыш легко отделяется центрифужной силой. Лёгкие зародыши отделяется от основной суспензии на гидроциклонах, предназначенных для отделения первичного зародыша. Для полного разделения поток продукта с остатками зародыша подвергается повторному помолу с последующей сепарацией на гидроциклонах, которая эффективно удаляет остаточный - вторичный - зародыш. Зародыши многократно промывают в противотоке на трёхступенчатом сите для удаления крахмала. Чистая вода добавляется на последней ступени.

Отделение зародыша на заводе мощностью 150 тонн кукурузы в день

Рафинированное крахмальное молоко кроме крахмала содержит некоторое количество очень мелкой мезги, скоагулированных белков и остатки клеточного сока картофеля. Соковая вода при стоянии на воздухе быстро розовеет и затем становится более темной, в связи с чем цвет крахмала ухудшается. Длительное соприкосновение крахмала с соковой водой уменьшает его клейстерообразующую способность. Поэтому старая аппаратура для выделения крахмала длительным отстаиванием (отстойные чаны) в настоящее время повсеместно заменяется осадительными центрифугами различных типов.

Чтобы получить крахмал высокого качества (чистотой 99,4-99,6%), необходимо удалить почти все примеси, для чего производится промывание крахмала.

Пурификаторы. На некоторых заводах для выделения и промывания крахмала используют специально оборудованные центрифуги, называемые пурификаторами. Пурификатор (рис. 1) - очиститель - представляет собой центрифугу с вертикальным валом 1, барабаном 2 и кожухом 3. Барабан имеет диаметр 1,2 м, высоту 0,8 м и частоту вращения 400-500 об/мин. Крахмальное молоко поступает через неподвижную воронку 4 на вращающееся колесо-турбину 5, которое сообщает молоку окружную скорость, равную скорости вращения барабана. Здесь под действием центробежной силы молоко распределяется по вертикальной образующей барабана и разделяется на три слоя: на стенке сначала оседают тяжелые примеси, затем чистый крахмал, потом слой грязевого крахмала и, наконец, промывная вода, образующая полый цилиндр. Разделение происходит примерно в течение минуты, после чего приводится в движение нож 6, которым как бы подрезается слой соковой воды. Вода теряет свою скорость и стекает через нижнее отверстие 7. После удаления воды нож медленно подводится к грязевому слою и осторожно срезает его. Этот слой также выводится через нижнее отверстие цеитрифуги.

Чистый крахмал разводят водой, подаваемой по вертикальной трубе. В этот момент нож отводят, держатель ножа и мешалки подводят к слою крахмала другой стороной и мешалкой 8 при уменьшенной частоте вращения барабана суспендируют крахмал. Затем мешалка возвращается в первоначальное положение, и крахмал снова осаждается. Вновь удаляют промывную воду и грязевой слой и разводят крахмал чистой водой. Чистое крахмальное молоко выводят из барабана центрифуги, вводя в слой молока трубу 9, направленную против вращения барабана. Тонкий слой осадка у стенки барабана (3-4 мм) всегда остается, и в нем сосредоточивается основная масса песка, удаляемая периодически.

Пурификатор обеспечивает хорошее качество крахмала. К недостаткам машины относится периодичность цикла работы и трудность обслуживания.

Рис. 1 . Пурификатор.

Гидроциклон. Наиболее совершенным оборудованием для разделения и промывания крахмальных суспензий, применяемым как в СССР, так и за рубежом, являются гидроциклоны. Крахмальное молоко поступает в гидроциклон (рис. 2) по трубе / тангенциально под давлением, вследствие чего поступательное движение преобразуется во вращательное и тяжелые частицы центробежной силой отбрасываются на внутреннюю поверхность конуса, по которой они потоком (густой сход или тяжелая фракция) сползают к сливному отверстию 2. Легкая фракция продукта (жидкий сход) вытесняется сгущенной фракцией и поднимается вихреобразно к сливному устройству 3, через которое выводится из гидроциклона.

Для увеличения центробежной силы, а следовательно, для лучшего разделения крахмала и тонкой мезги в картофелекрахмальном производстве используют гидроциклоны малого размера (микроциклоны) с внутренним диаметром цилиндрической части 20 мм.

С целью повышения пропускной способности гидроциклонов при выделении крахмала обычно применяют батареи (пакеты), состоящие из большого количества параллельно установленных цилиндро-конических элементов (микроциклонов). Такие батареи (мультициклоны) представляют собой цилиндры, разделенные двумя поперечными дисками на три части. Диски имеют отверстия, между которыми вставляются микроциклоны. В среднюю камеру насосом нагнетается крахмальная суспензия, с помощью тангенциально расположенных сопел она распределяется по элементам гидроциклона. Сгущенные сходы собираются во второй камере, а осветленные жидкие сходы - в третьей. Вторая и третья камеры мультициклонов снабжены отводными трубами, по которым продукты выводятся на следующую технологическую операцию.

Для полного отмывания крахмала от растворимых веществ и почти полного удаления мезги крахмальную суспензию обычно обрабатывают на мультициклонах последовательно в три ступени. При такой обработке крахмальная суспензия концентрацией 7% из сборника исходного продукта через фильтры подается на I ступень основной цепи гидроциклонов. Сгущенный продукт разбавляется жидким сходом III ступени и насосом перекачивается на II ступень. После II ступени сгущенный сход разбавляется чистой водой и перекачивается на III ступень, с которой густой крахмальный продукт концентрацией 36-40% собирается в сборник сырого крахмала.

Рис. 2 . Гидроциклон.

Жидкие сходы с I и II ступени поступают в сборник и оттуда направляются на специальные аппараты для отделения мелких зерен крахмала (осадительные центрифуги, специальные гидроциклоны и т. п.).


При снижении расходов воды сточные воды, поступающие на очистные сооружения, практически всегда имеют повышенное количество загрязнений, поскольку при неизменном технологическом процессе общее количество загрязнений в сточных водах остается постоянным. Это обстоятельство может осложнить работу очистных сооружений, особенно при биологическом методе очистки сточных вод. Для уменьшения концентрации загрязнений целесообразно предусматривать частичное удаление их на локальных очистных установках, а также возможность последующей утилизации.

При строительстве новых и реконструкции действующих промышленных предприятий большое значение имеет внедрение новых технологических процессов и разработка систем оборотного водоснабжения вместо прямоточных. Так, например, при прямоточной системе для выработки 1 т высококачественной целлюлозы требуется 350…400 м 3 воды, а при оборотной – 150…200 м 3 .

Наиболее широко применяются системы оборотного водоснабжения при наличии сточных вод, имеющих лишь термальные загрязнения. В этом случае эти воды проходят через охладительные сооружения (градирни, брызгальные бассейны, пруды) и вновь подаются в производство. В процессе мокрого обогащения руд и при гидрозолоудалении воды загрязняются, и перед повторным использованием их следует отстаивать. За последнее время оборотное водоснабжение внедрено практически во всех охлаждающих системах. Опыт эксплуатации таких систем показывает, что повторное использование отработанных вод более экономично, чем освоение новых источников водоснабжения. Большое значение имеет также научное обоснование норм расхода воды на единицу готовой продукции или используемого сырья.

Значительная экономия воды и снижение потерь ценных продуктов достигаются в результате замены водяного охлаждения воздушным . Применение аппаратов воздушного охлаждения на нефтеперерабатывающих заводах позволяет уменьшить расход воды для производственных целей в 3…5 раз.

На металлургических предприятиях сокращение водопотребления возможно при замене парового привода в кислородных и паровоздушных станциях электрическим , а также при замене в газоочистках доменного и сталеплавильного цехов водяной очистки на воздушную. Целесообразно применение воздушного охлаждения и на предприятиях химической промышленности в производствах капролактама, аммиака и т.д. Для сокращения водопотребления на металлургических заводах и предприятиях цветной металлургии весьма перспективным является применение испарительного охлаждения . Следует также учитывать, что количество пара, отходящего от установок испарительного охлаждения, вполне достаточно для нужд технологического процесса, а также отопления, вентиляции и горячего водоснабжения предприятия.

Применение аппаратов воздушного охлаждения сводит к минимуму потребность в охлаждающей воде. Кроме того, аппараты с воздушным охлаждением надежнее аппаратов с водяным охлаждением.

Одним из путей утилизации производственных сточных вод является использование их в сельском хозяйстве для нужд орошения. Естественно, сточные воды, имеющие преимущественно минеральные загрязнения, применять для орошения нецелесообразно, поскольку удобрительная ценность их невелика, а содержание в них токсичных веществ или солей отрицательно влияет на жизнедеятельность почвенной микрофлоры. Кроме того, эти вещества разрушают структуру почв. Сточные воды, содержащие органические вещества, могут быть использованы для орошения самостоятельно, а также вместе с бытовыми сточными водами после предварительной механической очистки. Наиболее пригодными для орошения являются сточные воды некоторых производств пищевой (табл. 4.3), химической и легкой промышленности. Целесообразно применение в целях орошения сточных вод предприятий по производству минеральных удобрений, азотной кислоты и т.д.

Сточные воды, опасные по санитарным показателям (например, от кожевенных заводов), применять для орошения запрещается. Воды с высокой концентрацией органических загрязнений от дрожжевых и крахмальных заводов перед использованием необходимо разбавлять, а от ликероводочных заводов – обрабатывать известью.

Нормы орошения зависят от многих факторов: концентрации сточных вод, вида выращиваемых культур, климатических условий, типа почв. Использование производственных сточных вод на полях орошения должно быть согласовано с органами Государственного санитарного надзора. Основным требованием к предназначенным для орошения производственным сточным водам является исключение возможности вредного их воздействия на почву, подземные воды, выращиваемые культуры, а также на здоровье людей.

Таблица 4.3

Предприятия

Удобрительные вещества, г на 1 м 3 воды

Азот общий

Оксид калия

Фосфорный ангидрид

Сахарные заводы

Молочные заводы

Крахмальные заводы

Скотобойни и мясокомбинаты

Дрожжевые заводы

Плодоовощные фабрики

Весьма перспективны для орошения сельскохозяйственных культур сточные воды крахмальных заводов, которые могут быть использованы во всех почвенно-климатических зонах; при этом наибольшей удобрительной ценностью обладают сточные воды производства картофельного крахмала.


За счет высокого содержания элементов питания в этих водах повышается плодородие почв и урожай сельскохозяйственных культур (урожай кукурузы и многолетних трав при орошении повышается в 2…3 раза).

Меньшей удобрительной ценностью обладают сточные воды сахарных заводов. Применение их целесообразно (после предварительного осветления) для орошения черноземных почв. При использовании сточных вод для орошения значительная часть площади полей фильтрации, где ранее очищались сточные воды сахарных заводов, может быть возвращена в сельскохозяйственное землепользование.

Представляет интерес также использование спиртовой барды, которая образуется при производстве спиртов на основе растительного сырья, как добавки в корм для скота. В этой связи целесообразно расположение животноводческих ферм в непосредственной близости от промышленного объекта.

Эффективным путем снижения загрязненности производственных сточных вод является извлечение из них ценных веществ, которые попадают в сточные воды в виде отходов в процессе производства. Извлечение ценных веществ осуществляется либо в цехах сразу после выхода отработанных сточных вод из технологического аппарата, либо в прицеховых локальных установках. Как правило, ценные вещества извлекают из сточных вод не только для снижения концентрации загрязнений, но и для их утилизации.

Из сточных вод нефтеперерабатывающих и нефтедобывающих заводов извлекаются и утилизируются нефть и нефтепродукты, из сточных вод целлюлозно-бумажных комбинатов – целлюлозное волокно. В сульфатцеллюлозном производстве после варки целлюлозы регенерируются крепкие щелоки; сульфитцеллюлозные щелоки используются для получения спирта и дрожжей. Из сточных вод фабрик первичной обработки шерсти (ПОШ) извлекают шерстный жир, который идет на изготовление ланолина – ценного продукта, применяемого в медицинской, электронной, парфюмерной и других отраслях промышленности.

В сооружениях механической очистки сточных вод от производства минеральных пигментов задерживается практически чистый пигмент.

Для очистки от сероводорода дренажных вод законтуренных скважин и вод внутрикарьерного водоотлива горно-химических комбинатов может быть применен физико-химический метод очистки с последующей аэрацией в скрубберах-дегазаторах (при концентрации сероводорода 50…100 мг/л). Выделяющийся сероводород используется для получения серной пасты.

Для обезвреживания сернисто-щелочных сточных вод нефтеперерабатывающих заводов рекомендуется карбонизировать их диоксидом углерода, содержащимся в дымовых газах, с получением раствора кальцинированной соды. Может быть применен также метод электролиза, при котором регенерируется щелочь.

Очистка сточных вод предприятий вискозного волокна включает применение регенеративных методов с целью возврата цинка в производство.

На кожевенных заводах проектируются установки по извлечению и утилизации хрома и шерсти.

Способы извлечения ценных примесей из производственных сточных вод могут быть различны, и их применение обосновывается многими факторами.

Для извлечения тяжелых металлов применяются химические и физико-химические методы. При производстве фото- и киноматериалов образуются воды, содержание серебра в которых составляет 20…70 мг/л. В локальной установке по регенерации серебра сточные воды собираются в резервуар, из которого насосом перекачиваются в емкость и в ней подогреваются острым паром до температуры 35…45 °С. В эту же емкость подается 10 %-й раствор сульфата железа. Затем воды самотеком поступают в реактор, в котором при рН = 9,2…10,2 образуется осадок, содержащий серебро. Вместе с водой осадок поступает в отстойник, откуда насосом перекачивается в сушилку. В подсушенном виде осадок отправляют на завод, где его утилизируют. Вода, освобожденная от серебра, из отстойника направляется на очистные сооружения. В течение года на установке перерабатывается 25 тыс. м 3 воды, содержащей серебро, и утилизируется около 500 кг серебра.

При производстве калиевой селитры отходом является рассол с содержанием хлорида натрия 220…250 г/л, С вводом на заводе цеха утилизации хлорида натрия содержание последнего в общем стоке снизилось с 4 800 до 1 200 мг/л, При этом ежегодно утилизируется свыше 3 500 т хлорида натрия, 40 % которого выпускается в виде химической продукции реактивной чистоты.

Таким образом, сточные воды промышленных предприятий представляют собой сложные водные растворы. Методы их обработки, пути использования и возможность утилизации содержащихся в них ценных веществ должны обосновываться с учетом технологии производства, экономических факторов, санитарных требований и местных условий.

Технология кукурузного крахмала с предварительным замачиванием зерна

Технология производства кукурузного крахмала с предварительным замачиванием кукурузного зерна, предназначенным для "мокрого" удаления зерновой оболочки и зародыша, конкурирует с технологией "сухого" извлечения этих компонентов.

Технология крахмала с предварительным замачиванием зерна включает ряд процессов: диффузию (замачивание зерна), измельчение, сепарирование, обезвоживание, сушку, складирование, которые характеризуются большими продуктовыми потоками, возвратами продуктов, многостадийностью обработки.

Здесь подробно рассматриваются стадии технологического процесса производства кукурузного крахмала, каждая из которых сопровождается побочными технологическими операциями. Например, замачивание зерна может продолжаться и после его дробления, а выделение оставшегося зародыша может продолжаться на стадии выделения и промывания мезги; выделение белка и оставшейся мелкой мезги из крахмала дополнительно осуществляется на стадии промывания крахмала. Итак:

  • Расчет барабанного вакуум-фильтра для обезвоживания глютена

    Рассмотрим пример. Допустим, что для завода производительностью А = 360 тонн абсолютно сухой кукурузы в сутки требуется установить барабанный вакуум фильтр для обезвоживания глютена.

      Количество глютеновой суспензии, поступающей в корыто вакуум-фильтра, b"" = 103% к весу кукурузы;

      вязкость фильтрата при 25 гр Цельсия составляет м=1,67 * 10 -6 кг * мин/ м2;

      удельный вес сухого глютена y2=1180 кг/м2; содержание глютена в суспензии b"=10%;

      давление при фильтрации 6000 кг/м2;

      барабан вакуум фильтра делает за 2 минуты 1 оборот с углом погружения 120 градусов; удельный вес фильтрата y1=1004 кг/м3; сопротивление ткани р=1,6 * 10 11 м-1;

      влажность сходящего глютена w=60%

    С" = 10 * 1004 / 100 - 10 = 111,5 кг/м3

    Вес сухого остатка, отлагаемого при получении 1 м3 фильтрата

    С = 115,5 * 1004 * (100 - 60) / 1004 * (100 - 60) - 111,5 * 60 = 135 кг/м3

    Объемный вес обезвоженного глютена

    y0 = 100 * y1 * y2 / 100 * y1 + (y2 - y1) * w = 100 * 1004 * 1180 / 100 * 1004 + (1180 - 1004) * 60 = 1100 кг/м3

    Время фильтрации

    z1 = 140 / n * 360 = 140 / 0,5 * 360 = 0,78 мин

    Объем фильтрата, который отлагает осадок, сопротивление которого равно сопротивлению ткани

    V1 = р * y0 / r * C = 1,6 * 10 11 * 1100 / 200 * 10 11 * 135 = 0,0653 м3

    Константа фильтрации

    b = 1,67 * 10 -6 * (135 * 200 * 10 11 / 1100 * 2 * 6000) = 342 мин/м3

    Количество фильтрата, получаемого с 1 м2 поверхности за время z

    V = (100 * y1 * y2 / 100 * y1 + (y2 - y1) * w = 100 * 1004 * 1180 / 100 * 1004 + (1180 - 1004) * 60 = 0,0155 м2/ м3

    Минутное количество фильтрата может быть определено следующим образом

    Количество глютеновой суспензии, получаемое на заводе в минуту, составляет

    А * b"" / 24 * 60 * 100 , тонн

    где b"" - количество глютеновой суспензии в % к весу кукурузы; b""=103%

    Если в суспензии содержится глютена b"%, то количество глютена за минуту будет

    А * b"" * b" / 24 * 60 * 100 * 100, тонн

    При влажности глютена w% количество влажного глютена, снимаемого с барабанного вакуум фильтра, будет равно

    А * b"" * b" *100 / 24 * 60 * 100 * 100 * (100 - w), тонн

    Следовательно, минутное количество фильтрата

    V" = (А * b"" / 24 * 60 * 100) - (А * b"" * b" *100 / 24 * 60 * 100 * 100 * (100 - w)) , тонн

    V" = (А * b"" / 24 * 60 * 100) * (1 - (b" / 100 - w) * 1/y, м3/мин

    После подстановки получим:

    V" = (360 * 103 / 24 * 60 * 100) * (1 - (10 / 100 - 60) * 1/1,004 = 0,192 м3/мин

    Активная поверхность фильтрации:

    F = 0,192 * 0,78 / 0,0155 = 9,67 м2

    Полная поверхность фильтрации:

    F = (9,67 / 140) * 360 = 27 м2

    Толщина лепешки на фильтре:

    l = V * 100 * C / Y0 * (100 - w) = 0,0155 * 135 * 100 / Y0 * (100 - 60) = 0,00475 м

    Экстракт, отбираемый из замочной батареи, содержит 5 - 8% сухих веществ, в зависимости от способа работы замочной станции и технологической схемы производства. Экстракт представляет собой большую ценность как кормовое средство, а также как сырье для производства спирта этилового, сухих кормовых дрожжей или антибиотиков.

    Для сгущения экстракта после предварительной фильтрации его упаривают на выпарной установке. На выпарку поступает около 100% жидкого экстракта. Выпарная станция состоит из 2х или 3х корпусов. Увариваемый продукт имеет высокую кислотность, поэтому выпарные аппараты изготавляют из кислотоупорной аустенитной стали AISI 304. Экстракт после сгущения содержит 45-46% сухих веществ и имеет кислотность около 4 - 5% в пересчете на HCl

    При упаривании экстракта наблюдается обильное пенообразование, которое может привести к перебросу жидкости в паровую камеру последующего корпуса выпарного аппарата. Поэтому уровень жидкости в аппарате должен быть невысоким, аппарат нужно снабдить пеногасителями и пеноловушками.

    Экстракт из замочных чанов и сборника 25 подается в отстойник 6 для удаления взвешенных частиц путем непрерывного отстаивания, а из него - в сборник 62, из которого направляется на подогрев паром в теплообменник 63 до температуры 75-80"C. Затем он уваривается в выпарных аппаратах (трехкорпусная выпарная установка 64 ), поступает в сборник 72, взвешивается на тензометрических весах 71 и насосом 73 затаривается в цистерну.

    Образовавшийся при уваривании экстракта экстрапар конденсируется в поверхностном конденсаторе 75 и через барометрический сборник 76 насосом 676 перекачивается на градирню. Для конденсации пара в трубы конденсатора подается оборотная вода с градирни. Воздух, содержащийся в воде и паре, из конденсатора 75 выкачивается вакуум-насосом 77 и удаляется в атмосферу. По мере необходимости проводится химическая очистка поверхности нагрева выпарных аппаратов от накипи и других загрязнений.

    Расчёт выпарной станции для экстракта

    Для расчета выпарной станции составляется тепловой и материальный баланс каждого корпуса. Если плотность раствора, поступающего и уходящего с выпарки, известна, то количество выпаренной воды можно определить по такой формуле

    W = S * (СВ2 - СВ1 / СВ2) ,

    где S - количечтво жидкого раствора, поступающего в выпарку,

    где СВ1 и СВ2 - содержание сухих веществ в растворе до и после выпаривания в %,

    Пример. Завод перерабатывает 450 тонн абсолютно сухой кукурузы в сутки. Требуется определить расход пара на выпарку экстракта и поверхность нагрева каждого корпуса. Известно, что количество экстракта, поступающего на выпарку, равно 100% к весу кукурузы. Температура экстракта 35"C. Соковый пар с выпарки используется для подогрева экстракта перед выпаркой в теплообменниках первой группы. Начальное содержание сухих веществ в экстракте 7,5%, конечное - 40%. Теплоемкость сгущенного экстракта 0,93 ккал/кг "C

    Расход тепла для подогрева экстракта от 35 до 75"C с учетом 5% потерь

    Q = 100 * 1 * &75 - 35) * 1,05 = 4200 ккал

    Расход вторичного пара I корпуса установки на подогрев экстракта в теплообменнике

    E1 = Q / л - тк = 4200 / 638 - 94 = 7,7 кг

    где л - теплосодержание пара

    где тк - температура конденсата

    Количество выпариваемой воды из 100 кг экстракта

    W = 100 (40 - 7,5 / 40) = 81,5 кг кг

    Проектируем выпарную установку из трех корпусов с одинаковой поверхностью нагрева. При этом условии полезные разности температур в корпусах должны быть прямо пропорциональны относительным тепловым нагрузкам и обратно пропорциональны коэффициентам теплопередачи отдельных корпусов

    Опустим некоторые вычисления

    Таким образом поверхность нагрева корпусов

    F1 = 204 m2

    F2 = 204 m2

    F3 = 204 m2

    Основные характеристики сырья и готовой продукции при переработке кукурузы

    Современная техническая оснащенность кукурузо-крахмальных предприятий позволяет получать высокие показатели извлечения и качества крахмала при переработке кукурузы урожайных сортов и гибридов с высоким содержанием крахмала и низким - протеина.

    При переработке кукурузного зерна получают:

      сухой кукурузный крахмал, который должен соответствовать следующим показателям качества:

      цвет - белый с желтоватым оттенком в зависимости от сорта;

      массовая доля влаги, % не более - 13;

      кислотность, мл 0,1 М раствора гидроксида натрия, в пересчете на 100 г абс. сухого крахмала, не более - 500;

      количество крапин на 1 дм 2 поверхности крахмала при рассмотрении невооруженным глазом, не более - 500;

      кукурузный экстракт от станции замачивания зерна, в который переходит до 7% сухих веществ замачиваемого зерна; концентрация экстракта - 8-10%, рН 4,2-4,4; после выпаривания на выпарных установках под разрежением экстракт концентрирется до содержания 48-50% СВ; цвет экстракта - от желтого до коричневого;

      кукурузный зародыш зародыш, идущий на выработку кукурузного масла;

      мезгу и глютен (кукурузный белок) для приготовления корма.

    Для выработки сухих кукурузных кормов используют побочные продукты: экстракт, глютен, мезгу, кукурузный зародыш и получают корма двух видов - с экстрактом и без экстракта.

    Сухие смешанные кукурузные корма с массовой долей 88% СВ содержат, %: углеводы - 86, белок и клетчатка - 76; при этом 100 кг товарного корма равноценны 125-135 кормовым единицам. Сухой кукурузный корм применяется для скармливания животным в различных смесях и комбикормах. Корма должны соответствовать следующим показателям качества:

      цвет - от желто-серого до темно-коричневого,

      запах - свойственный корму, без постороннего запаха,

      массовая доля влаги, % - не более 12,

      массовая доля сырого протеина, % - не менее 18,

    Технологические схемы производства крахмала из кукурузы от компании Альфа-Лаваль

    Производство крахмала из кукурузы (Вариант 1) - без потокового измельчителя и усредняющего сепаратора:

    Производство крахмала из кукурузы (Вариант 2) - с использованием усредняющего сепаратора:

    Производство крахмала из кукурузы (Вариант 3) - с использованием потокового измельчителя:

    При работе даже по самым прогрессивным технологиям производства кукурузного крахмала по замкнутой схеме требуется расход свежей воды более 2 м 3 на 1 тонну зерна кукурузы, или 3,2 м 3 - на 1 тонну сухого крахмала.

    За счет противоточной промывки крахмала и сопутствующих ему веществ рециркуля­ционной процессовой водой расход свежей воды может быть снижен до 1,8 м 3 на 1 тонну зерна, но при дальнейшем уменьшении его ухудшается про­мывка крахмала от растворимых веществ, которые появляются в самом на­чале технологического потока - при замачивании зерна.

    Основными условиями эффективного функционирования и развития технологического потока производства крахмала явля­ются:

      снижение расхода воды путем совершенствования процессов измель­чения сырья и разделения измельченной массы,

      решение проблемы утилизации побочных продуктов путем уменьшения их влажности, повышения их питательной ценности как кормовых и пищевых продуктов за счет биохимических и тепловых способов обработки,

      возможность использования побочных продуктов для производства комбикормов

Bacti - Bio 9500 (Бакти Био 9500) – гранулированный бактериальный концентрат для полного и интенсивного разложения органических веществ и осадков.

ПРИМЕНЕНИЕ:

Системы очистки сточных вод - септики, песколовки, емкости для осадков, установки очистки сточных вод канализационные сети и санитарные системы - раковины, туалеты коммерческие предприятия - рестораны, бистро, буфеты, магазины

ОПИСАНИЕ:

Bacti- Bio 9500 – порошкообразный концентрат, разработанный для разложения широкого спектра субстратов. Многочисленные микробные штаммы Bacti- Bio 9500 некультивированные и непатогенные. Отобранные штаммы - активные продуценты ферментов: амилазы (разложение крахмала), протеазы (разложение белков), целлюлазы (разложение целлюлозы), кератиназы (разложение кератина), липазы (разложение масел и жиров) и т. д. Несколько культур синтезируют биологические поверхностно активные вещества.

ХАРАКТЕРИСТИКИ:
Bacti- Bio 9500 - порошок,белого цвета. Диапазон pH от 6.0 до 9.0 с оптимумом 7.5. Наиболее эффективный диапазон температуры - от 25oC. до 55oC (77oF - 131oF) с оптимальной температурой около 30oC. Bacti- Bio 9500 также содержит биоразлагаемые поверхностно активные вещества, которые способствуют процессу очистки. Bacti- Bio 9500 содержит как минимум 2 миллиарда клеток на грамм.

ПРЕИМУЩЕСТВА:
Быстрое и глубокое воздействие, благодаря совместному действию бактерий, ферментов и биогенов. Полное удаление жиров и других органических отложений из канализационных сетей и очистных сооружений. Быстрый запуск очистных сооружений. Позволяет системам очистки работать лучше и дольше без обслуживания. Поддерживает канализационные сети чистыми. Контролирует газовыделение (устраняет неприятные запахи). Длительное самостоятельное существование в системах очистки.
Нетоксичен и безопасен при контакте с кожей. Жиры и органика

СТАНДАРТНАЯ ДОЗИРОВКА

Доза биопрепарата Bacti- Bio 9500 (отношение 1:100) 5- 7 мин. растворяется в ведре с теплой водой (+30 + 40°C) и выдерживается 10- 15 мин. для реактивации бактерий. После этого содержимое выливается в обрабатываемую систему.

1. Септики, песколовки, емкости для осадков. Внесение первой дозы: 50 г/м3 вносится непосредственно в емкость. Регулярное обслуживание: 6 г на 1 м3 объема септической камеры раз в две недели.Рекомендуем вводить биопрепарат чаще или увеличить дозу в случае, если появляется неприятный запах, или осадок недостаточно разлагается.

2. Канализационные сети. Для того, чтобы избежать засорения и неприятных запахов, необходимо ввести 1 дозу (50 г) на 3 сливных отверстия канализационной сети. Через месяц обработку повторить. В дальнейшем применять по мере засорения канализационных труб.

3. Коммерческие предприятия. Доза при обслуживании коммерческих предприятий определяется, исходя из количества приемов пищи: до 250 приемов пищи/сут 50 г/месяц, 250 - 500 приемов пищи/сут 100 г/месяц, более 500 приемов пищи/сут 150 г/месяц

Очистные сооружения:

Капельные фильтры - 1,5 - 3 кг на 3780 м3 стока вводится через сифон сооружений. При необходимости инициирующую дозу вводят повторно через 48 часов. Для обслуживания используйте 0,75 - 1,5 кг препарата на 3780 м3 сточной воды. В хорошо аэрируемых аэротенках 0,75- 1,5 кг на 3780 м3 сточной воды. Из- за высокой эффективности препарата значительно снижается время гидравлической задержки. Ил обрабатывается отдельно. Аэробные сбраживатели - 0,5 кг в неделю на 330 м3 ила. При наличии значительного слоя жира удвойте дозу. Анаэробные реакторы, иловые площадки - дозировка примерно такая же, как и в аэробных. Продукт гармонично работает с метаногенами и усиливает выработку метана.

Малые очистные сооружения

Отстойники - 0,25- 0,5 кг в неделю на каждые 330 м3 производительности.

Двухъярусные отстойники - 0,25- 0,5 кг в неделю на каждые 330 м3 производительности. Рекомендуется периодическое перемешивание.

Лагуны, пруды доочистки (с аэрацией и без) - для удаления запахов, уменьшения количества ила, и ускорения осаждения вводите 0,25- 1 кг на 200 м3. Порошок распыляется на поверхности воды и вводится через влажный колодец.

Подъемные станции коллекторов, канализационные трубы и магистрали коллекторов
Вводится 0,4 кг на 165 м3 стока непосредственно в сливные отверстия.

ПРЕИМУЩЕСТВА

При анаэробном и анаэробном сбраживания ила, разложение будет происходить более полно, упрощается обезвоживание, повышается количество минерализованных биогенов.

БИОЛОГИЧЕСКАЯ ПРОГРАММА ОЧИСТКИ

Успех любой биологической программы очистки зависит от благоприятных эксплуатационных режимов и действий. В период микробиологической очистки требуется текущий контроль, чтобы гарантировать поддержание необходимых условий действий. Доза и частота введения препаратов специфичны для каждой индивидуальной биологической программы очистки.
Специфические особенности каждой ситуации должны быть подробно проанализированы перед проектированием корректирующей программы.
Программа очистки, как правило, включает более мощную дозу запуска и дозу обслуживания. Определение оптимальной дозы обычно выполняется на объекте, уменьшая частоту внесения дозы постепенно, пока не отмечается ухудшение эффективности работы препарата.