Применение просвечивающего электронного микроскопа. Электронная микроскопия Просвечивающая электронная микроскопия высокого разрешения

Читайте также:
  1. В 1. Физическая сущность сварочной дуги. Зажигание дуги. Термоэлектронная и автоэлектронная эмиссии. Работа выхода электрона.
  2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО НАПИСАНИЮ КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОННАЯ КОММЕРЦИЯ»
  3. Номинация: «Музыкально-художественная электронная презентация (групповой проект)»
  4. Номинация: «Музыкально-художественная электронная презентация (индивидуальный проект)»
  5. Регистрация измерительной информации. Электронная регистрация измерительной информации и её воспроизведение.
  6. Электронная коммерция в туризме. Применение мультимедийных технологий в области социально-культурного сервиса и туризма.

Лабораторная работа №3

Электронная микроскопия

Цель работы: ознакомление с основами метода электронной просвечивающей и сканирующей (растровой) микроскопии; количественный анализ микроструктуры образцов по электронно-микроскопическим снимкам.

Материалы и оборудование: напылительная установка, электронный просвечивающий и сканирующий микроскоп, образцы неорганических веществ и материалов, электронно-микроскопические снимки.

Общие сведения

Электронно-микроскопическое исследование неорганических веществ и материалов применяется для изучения особенностей их структуры и фазового со­става. Современные просвечивающие электронные микроскопы высокого разрешения позволяют получать увеличение до 150000 раз, наблюдать распределение атомов в кристаллических решетках.

В электронном микроскопе используется электронный луч, длина волны кото­рого в 100 000 раз короче длин волн видимого света. Это обеспечивает возможность получения большего увеличения. Длина волны l (нм) электронного луча определяется из уравнения

где V- напряжение ускоряющего поля, В.

Если изображение формируется в результате прохождения электронного пучка через прозрачный для электронов образец, имеет место так называемая просвечивающая электронная микроскопия – ПЭМ. Резкое расширение возможностей обработки сигналов позволило развить целый комплекс методов, основанных на использовании принципов ПЭМ и объединенных под общим названием просвечивающей растровой электронной микроскопии – ПРЭМ: энергетический дисперсионный анализ рентгеновского излучения, спектроскопия вторичных электронов, анализ энергетических потерь проходящих электронов и др.

В результате взаимодействия пучка первичных электронов с поверхностью образца может возникнуть вторичная электронная или электромагнитная эмиссия (в рентгеновской или оптической области спектра). В этом случае для получения информации об исследуемых объектах используется сканирующая (растровая) электронная микроскопия – СЭМ (или РЭМ), позволяющая получать изображения объектов в результате регистрации потока вторичных электронов, а также рентгеноспектральный микроанализ, регистрирующий эмитируемый образцом рентгеновский сигнал, что позволяет проводить качественный и количественный фазовый анализ исследуемых объектов.

Основное различие принципов работы просвечивающего и растрового электронных микроскопом связано со способом сбора данных и формированием изображения. Как и в оптическом микроскопе, в просвечивающем электронном микроскопе информацию собирают непрерывно со всей изучаемой области, а увеличенное изображение фокусируют при помощи линз. Другими словами, информация со всех точек изображения собирается одновременно. В растровом электронном микроскопе информация собирается последовательнодля каждой точки по мере движения первичного пучка электронов. На это требуется время, необходимое для получения статистически значимого сигнала от каждой точки.

Просвечивающая электронная микроскопия.

Для проведения исследований методом ПЭМ используют просвечивающие электронные микроскопы, представляющие собой высоковакуумные высоковольтные устройства.

Как видно из рис. 1, изображение формируется в результате прохождения пучка электронов через анализируемый образец.



Рис.1 – Принципиальная схема просвечивающего электронного микроскопа

При этом используются быстрые электроны, для получения которых в современных моделях микроскопов применяют ускоряющее напряжение порядка 100–200 кВ.

В просвечивающем электронном микроскопе применяют два основных вида съемки: светлопольное изображение, отображающее морфологию исследуемого объекта и формируемое центральным пучком прошедших электронов и темнопольное изображение.

Для получения информации о структуре исследуемых образцов на уровне атомного разрешения используют просвечивающую электронную микроскопию высокого разрешения – ВРПЭМ (High Resolution Transmission Electron Microscopy – HRTEM). Данный метод получил широкое распространение только в последние 10–15 лет и является весьма эффективным для определения строения наночастиц.

На рис. 2 представлен снимок аналитического электронного микроскопа.



Источником электронов является нагретая вольфрамовая нить, создающая пучок электронов с плотностью тока до 5x10 4 А/м 2 . Кристаллы гексаборида лантана (LaB 6) позволяют повышать плотность тока до 10 6 А/м 2 .

Электроны испускаются электронной пушкой, установленной в верхней части колонны просвечивающего электронного микроскопа. Внутри колонны путем откачки воздуха поддерживается высокий вакуум. Испускаемые пушкой электроны ускоряются в трубке ускорителя и затем проходят через линзы осветителя, после чего попадают на образец.

После прохождения через образец электронов в объективной линзовой системе формируется изображение. Затем проекционная линза создает увеличенное изображение. Получающееся в итоге изображение, формируемое на флюоресцентном экране, можно наблюдать через окошко камеры наблюдения. Оно может быть записано на фотопленку в фоторегистрирующей камере, либо выведено на экран монитора компьютера.

Приготовление образцов для просвечивающей микроскопии. Для проведения исследований в просвечивающем электронном микроскопе необходимо иметь образцы толщиной не более 0,2 мкм, так как электроны легко поглощаются веществом. Это создает определенные трудности при приготовлении образцов. В этом случае прибегают к способам получения тонких пленок или ультратонких срезов: механической обработке, электрохимическому травлению, ионному травлению, напылению покрытия. Однако при использовании таких методов возможно нарушение первоначальной структуры материала.

Более реальным является метод реплик – косвенный метод исследования, заключающийся в получении отпечатка (реплики) с исследуемой поверхности, с высокой точностью воспроизводящего ее топографию. Схема приготовления реплики показана на рис. 3.

Реплику обычно получают методом напыления. Для этого используют опытный образец объемом не менее 1 см 3 . На свежий скол исследуемого образца наносят в вакууме при испарении углерод, который образует удерживающий слой в виде тонкой сплошной пленки. Угольная пленка не дает собственной структуры. Затем для по­вышения контрастности углеродную пленку оттеняют, напыляя под острым углом к поверхности слой тяжелого металла (платина, хром).

Косое напыление тяжелого металла под углом 20–45° обеспечивает более интенсивное оседание его на соответствующих сторонах выступов и менее интенсивное на впадинах и противоположных сторонах выступов.

Неодинаковая толщина такой пленки металла вызывает разное поглощение проходящих электронов, что влияет на яркость изображения и создает контраст.

Полученную пленку отделяют от образца с помощью 10%-ного раствора желатина. При сушке желатин образует прозрачную пленку, которая отделяется от образца вместе с репликой. Затем пленку помещают в воду. При растворении желатина на поверхности воды остается угольно-платиновая пленка–реплика, которую помещают на несущую сеточку и переносят в объектодержатель электронного микроскопа.

Для более четкого выявления структуры материала свежий скол предварительно (до нанесения реплики) подвергают травлению химическими реагентами. Из-за разной скорости растворения различных компонентов структуры формируется рельеф поверхности образцов. После травления скол тщательно промывают и высушивают. Метод реплик дает удовлетворительные результаты при величине структурных элементов не менее 10 нм. Рассматривая изображение поверхности образца на электронном микроскопе, выбирают наиболее характерные участки структуры.


1 | | |

микроскоп, электронный просвечивающий сокр., ПЭМ (англ. сокр., TEM ) — разновидность - высоковакуумный высоковольтный прибор, в котором изображение от ультратонкого объекта (толщиной порядка 500 нм и менее) формируется в результате взаимодействия пучка электронов с веществом образца при прохождении через него насквозь.

Описание

Принцип действия просвечивающего электронного микроскопа практически аналогичен принципу действия оптического микроскопа, только в первом используются магнитные линзы вместо стеклянных и электроны вместо фотонов. Пучок электронов, испускаемый электронной пушкой, фокусируется с помощью конденсорной линзы в маленькое пятно ∼2–3 мкм в диаметре на образце и после прохождения через образец фокусируется с помощью объективной линзы для получения проекции увеличенного изображения на специальном экране образца или детекторе. Очень важным элементом микроскопа является апертурная диафрагма, расположенная в задней фокальной плоскости объективной линзы. Она определяет контраст изображения и разрешающую способность микроскопа. Формирование контраста изображений в ПЭМ можно объяснить следующим образом. При прохождении через образец пучок электронов теряет часть своей интенсивности на рассеяние. Эта часть больше для более толстых участков или для участков с более тяжелыми атомами. Если апертурная диафрагма эффективно отсекает рассеянные электроны, то толстые участки и участки с тяжелыми атомами будут выглядеть как более темные. Меньшая апертура увеличивает контраст, но приводит к потере разрешения. В кристаллах упругое рассеяние электронов приводит к появлению дифракционного контраста.

Авторы

  • Вересов Александр Генрихович
  • Саранин Александр Александрович

Источник

  1. Handbook of microscopy for nanotechnology // Ed. by Nan Yao, Zhong Lin Wang. - Boston: Kluwer Academic Publishers, 2005. - 731 p.

Расширил предел разрешения от длины световой волны до атомных размеров, а точнее до межплоскостных расстоянии величиной порядка 0,15 нм. Первые попытки сфокусировать пучок электронов при помощи электростатических и электромагнитных линз были сделаны в 20-х годах XX века. Первый электронный микроскоп был сделан И.Руска в Берлине в 30-х годах. Ею микроскоп был просвечивающим и предназначался для изучения порошков, тонких пленок и срезов.

Отражающие электронные микроскопы появились после Второй мировой войны. Почти сразу же они были вытеснены растровыми (сканирующими) электронными микроскопами, объединенными со средствами микроанализа.

Качественная подготовка образца для просвечивающего электронного микроскопа является весьма непростой задачей. Тем не менее, методы такой подготовки существуют.

Имеется несколько методов подготовки образца. При наличии хорошего оборудования тонкую пленку можно приготовить практически из любого технического материала. С другой стороны, не стоит терять время на изучение плохо подготовленного образца.

Рассмотрим методы получения тонких образцов из блочного материала. Методы подготовки биологических тканей, дисперсных частиц, а также осаждение пленок из газовой и жидкой фаз здесь не рассматриваются. Следует отметить, что практически любой материал имеет особенности подготовки для электронного микроскопа.

Механическая обработка.

Исходной точкой для подготовки образца обычно является диск диаметром 3 мм и толщиной несколько сотен микрон, вырезаый из массивной детали. Этот диск может быть вырублен из металлической фольги, вырезан из керамики или выточен из блочного образца. Во всех случаях необходимо свести к минимуму опасность микрорастрескивания и сохранить плоскую поверхность образца.

Следующая задача состоит в уменьшении толщины лиска. Это делают шлифовкой и полировкой, как при подготовке образца для оптического микроскопа. Выбор оптимального способа шлифовки определяется жесткостью (модулем упругости), твердостью и степенью пластичности материала. Пластичные металлы, керамики и сплавы полируют различно.

Электрохимическое травление.

При механической обработке, как правило, появляются приповерхностные повреждения типа пластического сдвига или микрорастрескивания. В случае проводящего металла толщину образца можно уменьшить путем химического или электрохимического растворения в электрополирующем растворе. Однако следует иметь в виду, что параметры обработки тонких образцов значительно отличаются от макрообразцов, прежде всего в связи с малостью обрабатываемой области. В частности, в случае тонких образцов можно использовать гораздо более высокие плотности тока. Проблема охлаждения материала вследствие протекания химической реакции решается путем проведения реакции в струе растворителя, причем обработка диска может быть двусторонней.

Тонкие пленки металлов, сплавов и других электропроводящих материалов часто успешно полируют струей. Однако условия полировки таких материалов различаются по составу, температуре раствора и плотности тока.

Области вокруг нейтрального отверстия должны быть прозрачными (обычно их диаметр равен 50-200 нм). Если подходящие для исследования области слишком малы, это связано со слишком долгим травлением, которое следует прекращать сразу после появления отверстия Если эти области слишком грубы, то или слишком мала плотность тока, или следует сменить загрязненный и перегретый полирующий раствор.

Ионное травление .

Метод ионного травления (бомбардировки) имеет следующие достоинства:

(а) Ионное травление является газофазным процессом, проводимым при низком давлении, когда легко контролировать степень загрязнения поверхности.

(б) Электрохимические методы ограничены проводящими металлами, в то время как ионное травление применимо и к непроводящим материалам.

(в) Хотя ионное травление может приводить к приповерхностному радиационному повреждению материала, его степень может быть уменьшена соответствующим выбором параметров процесса.

(г) Ионное травление позволяет удалить поверхностные окисные слои, появившиеся при предыдущей электрополировке. При этом не изменяется поверхностный состав, поскольку процесс обычно проводят при невысоких температурах, когда отсутствует поверхностная диффузия.

(д) Ионное травление позволяет обрабатывать мультислоистые материалы, состоящие из нескольких нанесенных на подложку слоев, в плоскости, перпендикулярной слоям. Отметим, что стандартные методы химического травления этого не позволяют.

(с) Метод ионного травления позволяет обрабатывать области размером менее 1 мкм, что невозможно химическими методами. Он очень удобен для подготовки тонких пленок.

Конечно, этот метод имеет и недостатки. Скорость травления максимальна. если пучок ионов перпендикулярен поверхности образца, а атомные веса ионов и обрабатываемого материала близки. Однако пучок ионов переносит импульс, и при угле 90 0 максимально микроповрежление поверхностного слоя. Кроме того, из-за опасности химического взаимодействия ионов с обрабатываемой поверхностью в качестве пучка используют лишь инертные газы (обычно аргон).

Скорость травления может быть увеличена путем увеличения энергии ионов, но при этом они начинают проникать в материал и создают поврежленный поверхностный слой. Практически, энергия ионов ограничена несколькими кэВ, когда глубина внедрения не слишком высока и ионы могут диффундировать на поверхность, не повреждая материал.

Скорость травления не превышает 50 мкм в час. Как следствие, перед ионной обработкой образцы необходимо обрабатывать механически (диском или придавая им форму клина) или электрохимически до толщины 20-50 мкм. При ионной бомбардировке образец вращают. чтобы гарантировать однородную обработку, причем для увеличения скорости травления начальная стадия обработки выполняется одновременно с двух сторон под углом 18 0 . После этого угол пучка (и, следовательно, скорость процесса) уменьшают. Минимальный угол, позволяющий получить плоскую поверхность и примерно одинаковую толщину пленки в достаточно большой области, определяется геометрией ионного пучка. При стишком малых углах падения пучок перестает попадать на образец, и распыляемый при этом материал камеры осаждается и загрязняет поверхность образца. Минимальные углы падения пучка на заключительной стадии обработки обычно равны 2-6 0 .

Как правило, обработку заканчивают при появлении на поверхности образца первого отверстия. В современных ионных установках можно следить за обрабатываемой областью и процессе работы. что позволяет правильно завершить процесс.

Напыление покрытия.

Так как электронный пучок несет электрический заряд, образец в процессе работы микроскопа может заряжаться. Если заряд образца становится слишком большим (а но многих случаях это не так, поскольку остаточная поверхностная проводимость часто ограничивает величину заряда), образец нужно покрывать электропроводящим слоем. Наилучшим материалом для этого является углерод, который после напыления имеет аморфную структуру и имеет низкий атомный номер (6).

Покрытие создают, пропуская электрический ток через два контактирующих углеродных стержня. Второй способ состоит в распылении углеродного материала, бомбардируя его ионами инертного газа, после чего атомы углерода оседают на поверхность образца. «Проблемные» материалы могут потребовать покрытия с обеих сторон. Иногда тонкие (5-10 нм) нанометровые покрытия бывают слабо видны на изображении.

Метод реплик.

Вместо подготовки тонкого образца для просвечивающего электронного микроскопа иногда делают реплику (отпечаток) поверхности. В принципе, это не требуется, если поверхность можно изучать при помощи растрового электронного микроскопа. Однако и в этом случае может иметься целый ряд причин для приготовления реплик, например:

(а) Если нельзя резать образец. После разрезания детали в дальнейшем ее использовать нельзя. Напротив, снятие реплики позволяет сохранить деталь.

(б) В случаях, когда ищут определенные фазы на поверхности образца. Поверхность реплики отражает морфологию таких фаз и позволяет их идентифицировать.

(в) Часто можно экстрагировать одну из компонент многофазного материала, например, химическим травлением. Этот компонент можно выделить на реплике, при этом сохранив его и на исходном материале. Химический состав, кристаллографическую структуру и морфологию выделенной фазы можно изучать изолированно от основного материала, свойства которого иногда мешают исследованию,

г) Наконец, иногда нужно сравнить изображение реплики с оригинальной поверхностью в растровом электронном микроскопе. Примером является исследование материала в условиях механической усталости, когда поверхность изменяется в процессе испытания.

Стандартная методика состоит в получении негативной реплики при помощи пластичного полимера. Реплику получают при помощи отверждаемой эпоксидной смолы или размягченной растворителем полимерной пленки, прижимаемой к исследуемой поверхности перед испарением растворителя. В некоторых случаях требуется удалить поверхностное загрязнение. Для этого перед созданием конечной реплики используют ультразвук или делают предварительную «чистящую» поверхность реплику перед снятием конечной реплики. В некоторых случаях объектом исследования может быть «загрязнитель».

После застывания полимерной реплики ее отделяют от исследуемого образца и покрывают слоем тяжелого металла (обычно сплавом золота и палладия) для увеличения контрастности изображения. Металл выбирают так, чтобы при напылении размер его капель был минимален, а рассеяние электронов максимально. Размер капли металла обычно имеет порядок 3 нм. После затенения металлом, на полимерную реплику напыляют углеродную пленку толщиной 100-200 нм, а затем полимер растворяют. Углеродную пленку вместе с частицами, извлеченными полимером из оригинальной поверхности, а также затеняющий ее металлический слой (отражающий топографию оригинальной поверхности) после этого ополаскивают, кладут на тонкую медную сетку и помещают в микроскоп.

Подготовка поверхности.

Использование многослойных тонкопленочных материалов в электронике привело к необходимости развития методов их подготовки для изучения в электронном просвечивающем микроскопе.

Подготовка многослойных образцов имеет несколько этапов:

Сначала образец погружают в жидкую эпоксидную смолу, которую затем отверждают и разрезают перпендикулярно плоскости слоев.

Затем плоские образцы или протачивают диском, или полируют для получения клинообразных образцов. В последнем случае микрометром контролируют толщину удаленного материала и угол клина. Полировка имеет несколько стадии, на последней из которых используют частицы алмазного порошка диаметром 0,25 мкм.

Применяют ионное травление, до тех пор пока толщина исследуемой области не снизится до нужного уровня. Конечную обработку проводят ионным пучком под углом менее 6 0 .

Литература:

Брандон Д., Каплан У. Микроструктура материалов. Методы исследования и контроля // Издательство: Техносфера.2006. 384 с.

Просвечивающая электронная микроскопия является одним из самых высокоразрешающих методов исследования. При этом просвечивающий электронный микроскоп (ПЭМ) представляет собой аналог традиционного оптического микроскопа. Аналогия заключается в том, что изменение траектории распространения потока оптических квантов под действием преломляющей среды (линз) подобно действию магнитных и электрических полей на траекторию движения заряженных частиц, в частности электронов. Подобие, с точки зрения фокусировки электронов и формирования изображения исследуемого объекта, оказалось настолько близким, что электронно-оптические колонны первых магнитных и электростатических ПЭМ рассчитывали с помощью зависимостей геометрической оптики.

В качестве фокусирующих линз в современных ПЭМ (рис. 15.2) используют заключенные в магнитопровод электромагнитные катушки, которые создают фокусирующие магнитостатические поля (рис. 15.3). Магнитопровод линзы выполняет две функции: повышает напряженность поля

Рис. 15.2.

  • 1 - электронная пушка; 2 - блок конденсорных линз; 3 - блок объективной линзы с объектодержателем; 4 - блок проекционных линз; 5 - экраны для визуализации изображения; 6- высоковольтный источник питания; 7- вакуумная система
  • (т. е. усиливает его фокусирующую способность) и придает ему форму, обеспечивающую формирование изображения, наиболее точно соответствующего объекту. В отличие от стеклянных линз преломляющую силу магнитной линзы легко меняют путем изменения тока возбуждения в обмотке. Благодаря этому увеличение, обеспечиваемое микроскопом, можно менять непрерывно от нескольких сотен до миллионов крат.

Рис. 15.3. Схема электромагнитной линзы электронного микроскопа: I - магнитопровод; 2 - катушка возбуждения магнитного поля;

3- поле, фокусирующее электронный поток

В ПЭМ образцы «рассматривают» на просвет. То есть их облучают электронным пучком и получают нужную информацию в виде изображения, сформированного с помощью прошедших сквозь образец электронов. Всякое изображение состоит из участков определенного размера, отличающихся яркостью. Эти отличия в ПЭМ возникают из-за того, что электроны, проходя сквозь плотную среду образца, рассеиваются в ней (частично поглощаются, изменяют направление движения и, как правило, теряют часть своей энергии). Причем угловое распределение электронов, прошедших сквозь образец, несет информацию о плотности образца, его толщине, элементном составе и кристаллографических характеристиках.

Рис. 15.4. Поглощение потока электронов в тонкопленочном аморфном образце, имеющем участок повышенной плотности: а - б - распределение плотности тока j

Рис. 15.5. Поглощение потока электронов в тонкопленочном аморфном образце переменной толщины: а - прохождение потока электронов сквозь образец; б - распределение плотности тока j в прошедшем сквозь образец электронном потоке

Так, участки, содержащие более тяжелые атомы, рассеивают электроны на большие углы и вызывают более эффективное их поглощение (рис. 15.4). Точно так же участки аморфного образца, имеющие большую толщину, в большей степени отклоняют и поглощают электроны, чем более тонкие участки (рис. 15.5). Если с помощью линз оптически сопрячь плоскость образца и плоскость приемника-преобразователя, на поверхности последнего возникнет увеличенное изображение.

Если образец является кристаллом или поликристаллом, взаимодействие электронного пучка, представляющего собой плоскую волну, с кристаллической решеткой приводит к возникновению дифракционной картины (рис. 15.6). Геометрия этой картины описывается известным из курса физики уравнением Вульфа-Брэгга и однозначно связана с кристаллографическими параметрами образца. Зная энергию облучающих электронов, можно установить эти параметры с высокой точностью. Для того чтобы получить увеличенное изображение такой картины (дифрактограммы), достаточно оптически сопрячь плоскость формирования дифракционной картины (она располагается за плоскостью образца) и плоскость приемника-преобразователя.


Рис. 15.6. Электронографические картины, полученные от монокристаллического (я) и поликристаллического (б) образцов

Для визуализации указанных изображений прошедшие электроны фокусируют на поверхности приемника-преобразователя с помощью системы линз (объективной, промежуточной и т. п.). При этом из всех электронов, прошедших через образец, выделяют либо электроны, рассеянные на большие углы, либо нерассеянные (реже для формирования изображения используют электроны, рассеянные на малые углы, - обычно при малоугловой дифракции). В первом случае на полученном изображении более темными выглядят участки, характеризующиеся малой рассеивающей способностью (это гак называемый темнопольный режим формирования изображения), а во втором - наоборот (светлопольный режим).

Принципиальная схема ПЭМ показана на рис. 15.7. Микроскоп состоит из электронной пушки и системы электромагнитных линз, образующих вертикально расположенную электронно-оптическую колонну, в которой поддерживается вакуум Ю -3 ч-10~ 2 Па. Осветительная система микроскопа включает в себя электронную пушку и двухлинзовый конденсатор. Электронная пушка, как правило, термоэмиссионная, состоит из катода (нагретая нить из W или LaB 6), эмиттирующего электроны, управляющего электрода (на него подается отрицательный относительно катода потенциал) и анода в виде пластинки с отверстием. Между катодом и анодом создается мощное электрическое поле с ускоряющим напряжением 100-150 кВ.

Следует заметить, что существует немногочисленный класс гак называемых сверхвысоковольтных микроскопов, в которых ускоряющее напряжение может достигать нескольких мегавольт. С увеличением скорости уменьшается длина волны (А. = h/mv - h /(2теU) 0 5) электрона. С уменьшением длины волны возрастает разрешающая способность оптической системы любого микроскопа, в том числе и ПЭМ. Рост ускоряющего напряжения, кроме того, приводит к увеличению проникающей способности электронов. При рабочих напряжениях 1000 кВ и более возможно изучение образцов толщиной до 5-10 мкм.

Рис. 15.7.

  • 1 - катод; 2 - анод; 3 - первый конденсор; 4 - второй конденсор;
  • 5 - корректор юстировки; 6 - гониометрический столик с объектодержателем;
  • 7 - апертурная диафрагма; 8 - секторная диафрагма; 9 - промежуточная линза;
  • 10 - проекционная линза; 11 - приемник-преобразователь;
  • 12 - диафрагма поля зрения; 13 - стигматор промежуточной линзы;
  • 14 - стигматор объективной линзы; 15 - объективная линза;
  • 16 - исследуемый объект; 17- стигматор второго конденсора;
  • 18 - диафрагма второго конденсора; 19 - диафрагма первого конденсора; 20 - управляющий электрод

Однако при исследовании материалов в высоковольтном ПЭМ нужно учитывать образование в его структуре радиационных дефектов типа пар Френкеля и даже комплексов точечных дефектов (дислокационных петель, вакансионных пор) при длительном экспонировании под высокоэнергетическим электронным пучком. Например, в алюминии пороговая энергия смешения атома из узла кристаллической решетки для электронного пучка составляет 166 эВ. Такие электронные микроскопы являются эффективным инструментом для изучения появления и эволюции радиационных дефектов в кристаллических твердых телах.

Проходя через отверстие анода, пучок электронов попадает в конденсоры и корректор юстировки, где электронный луч окончательно наводится на изучаемый образец. В ПЭМ посредством конденсорных линз регулируют и контролируют размер и угол облучения образца. Далее с помощью полей объективной и проекционных линз на поверхности приемника- преобразователя формируется информационное изображение.

Для микродифракционных исследований в состав микроскопа включают подвижную селекторную диафрагму, которая в этом случае заменяет апертурную. Для большей универсальности между объективной и промежуточной линзами в ПЭМ устанавливают дополнительную линзу. Она повышает резкость изображения во всем диапазоне увеличений. Основное же назначение линзы состоит в обеспечении быстрого перехода в режим электронографических исследований.

В качестве приемника-преобразователя может использоваться люминесцентный экран, где в слое люминофора происходит преобразование потока электронов в поток оптического излучения. В другом конструктивном исполнении приемник-преобразователь включает в себя чувствительную матрицу (секционированные микроканальные пластины, матричные электронно-оптические преобразователи, ПЗС-матрицы (сокр. от «прибор с зарядовой связью»)), в которой поток электронов преобразуется в видеосигнал, а последний выводится на экран монитора и используется для создания ТВ-изображения.

Современные ПЭМ обеспечивают разрешение до 0,2 нм. В связи с этим появился термин «просвечивающая электронная микроскопия высокого разрешения». Полезное увеличение конечного изображения может достигать 1 млн крат. Интересно отметить, что при таком огромном увеличении деталь структуры размером 1 нм на конечном изображении имеет размер только 1 мм.

Поскольку изображение формируется из электронов, прошедших сквозь образец, последний из-за низкой проникающей способности электронов должен иметь малую толщину (обычно десятые и сотые доли микрометра). Существует эмпирическое правило, согласно которому толщина образца не превышает значения требуемой разрешающей способности более чем на порядок (для получения сверхвысокого разрешения 0,2 нм это правило уже не работает). Вследствие этого образец готовят в виде фольги или гонкой пленки, называемой репликой.

В зависимости от того, как образец готовится, его исследование может быть прямым, косвенным или смешанным.

Прямой.метод дает наиболее полную информацию о структуре объекта. Он заключается в утонении исходного массивного образца до состояния тонкой пленки, которая прозрачна или полупрозрачна для электронов.

Утонение образца - трудоемкий процесс, поскольку применение механических устройств на последней стадии невозможно. Обычно образец разрезают на миллиметровые пластинки, которые предварительно механическим путем полируют до толщины ~50 мкм. Затем образец подвергают прецизионному ионному травлению или электролитической полировке

(двусторонней или с обратной стороны от исследуемой поверхности). В результате он утоняется до толщины ~ 100- 1000 А.

Если образец имеет сложный состав, то надо учитывать, что скорость эрозии различных материалов при ионном распылении и электрополировке различна. В итоге получаемый слой дает прямую информацию не обо всем исходном образце, а лишь о чрезвычайно тонком его приповерхностном слое, оставшемся после травления.

Однако эта ситуация не критична, если сам образец представляет собой тонкую структуру, например, выращенную эпитаксиальную пленку или нанодисперсный порошок.

В некоторых случаях, относящихся, как правило, к неметаллическим пластичным материалам типа органики и биологических объектов, тонкие пленки для исследований отрезают от массивного исходного образца с помощью специальных устройств, называемых ультрамикротомами (рис. 15.8). Ультрамикротом представляет собой миниатюрную гильотину с прецизионным (обычно пьезокерамическим) приводом перемещения образца под нож. Толщина слоя, срезаемого прибором, может составлять единицы нанометров.


Рис. 15.8.

В ряде случаев пленки получают также путем физического напыления в вакууме на водорастворимые подложки (NaCl, КС1).

При исследованиях методом просвечивающей (трансмиссионной) электронной микроскопии можно изучать дислокационную структуру материалов (см., например, рис. 2.28), определять векторы Бюргерса дислокаций, их тип и плотность. Также с помощью ПЭМ возможно исследование скоплений точечных дефектов (в том числе и радиационных), дефектов упаковки (с определением их энергии образования), двойниковых границ, границ зерен и субзерен, выделений вторых фаз (с идентификацией их состава) и т. д.

Иногда микроскопы снабжают специальными приставками (для нагрева или растяжения образца в процессе исследования и пр.). Например, при использовании приставки, позволяющей растягивать фольгу в процессе исследования, наблюдают эволюцию дислокационной структуры при деформации.

При исследовании методом ПЭМ возможно проведение и микродиф- ракционного анализа. В зависимости от состава материала в зоне изучения получают диаграммы (электронограммы) в виде точек (образцы - монокристаллы или поликристаллы с зерном, превышающим зону исследования), сплошные или состоящие из отдельных рефлексов. Расчет этих элек- тронограмм аналогичен расчету рентгеновских дебаеграмм. С помощью микродифракционного анализа можно также определять ориентировки кристаллов и разориентировки зерен и субзерен.

Просвечивающие электронные микроскопы с очень узким лучом позволяют по спектру энергетических потерь электронов, прошедших через изучаемый объект, проводить локальный химический анализ материала, в том числе анализ на легкие элементы (бор, углерод, кислород, азот).

Косвенный метод связан с исследованием не самого материала, а тонких пленочных реплик, получаемых с его поверхности. На образце формируют тонкую пленку, до мельчайших подробностей повторяющую поверхностную структуру образца, и затем ее отделяют с помощью специальных методик (рис. 15.9).

Метод реализуют либо напылением в вакууме на поверхность образца пленки углерода, кварца, титана или других веществ, которую потом сравнительно просто отделяют от образца, либо оксидируют поверхность (например, медь), получая легкоотделяемые оксидные пленки. Еще более перспективно использование реплик в виде полимерных или лаковых пленок, наносимых в жидком виде на поверхность шлифа.

Для косвенного метода не требуются дорогостоящие высоковольтные микроскопы. Однако он значительно уступает прямому методу в информативности. Во-первых, исключается возможность исследовать кристаллографические характеристики образца, а также оценивать особенности его фазового и элементного состава.

Рис. 15.9.

Во-вторых, разрешение получаемого изображения обычно хуже. Полезное увеличение таких изображений ограничено точностью самой реплики и достигает в лучшем случае (для углеродных реплик) (1-2) 10 5 .

Кроме того, возможно появление искажений и артефактов в процессе изготовления самой реплики и отделения ее от исходного образца. Все это ограничивает применение метода. Многие задачи, связанные с исследованием косвенным методом, в том числе фрактогра- фия, в настоящее время решаются методами растровой электронной микроскопии.

Отметим, что метод осаждения тонкого слоя на поверхность образца применяется и при прямом исследовании утоненных объектов. В этом случае создаваемая пленка обеспечивает увеличение контраста формируемого изображения. На поверхность образца напыляют хорошо поглощающий электроны материал (Аи, Мо, Си) под острым углом так, чтобы он конденсировался больше на одной стороне выступа, чем на другой (рис. 15.10).

Рис. 15.10.

Смешанный метод иногда применяют при исследовании гетерофазных сплавов. В этом случае основную фазу (матрицу) изучают с помощью реплик (косвенный метод), а частицы, извлеченные из матрицы в реплику, исследуют прямым методом, в том числе с помощью микродифракции.

При этом методе реплику перед отделением разрезают на мелкие квадратики, а затем образец протравливают по режиму, обеспечивающему растворение материала матрицы и сохранение частиц других фаз. Травление проводят до полного отделения пленки-реплики от основы.

Особенно удобен смешанный метод при изучении мелкодисперсных фаз в матрице при их малой объемной доле. Отсутствие у реплики собственной структуры позволяет исследовать дифракционные картины от частиц. При прямом методе такие картины выявить и отделить от картины для матрицы крайне сложно.

В связи с развитием нанотехнологии и особенно методов получения ультрадисперсных и наноразмерных порошков (фуллероидов, НТ и др.) данный метод обеспечил высокий интерес исследователей к ПЭМ. Подвергаемые исследованию ультрадисперсные и наноразмерные частицы высаживают на очень тонкую и практически прозрачную для электронных лучей мембрану, после чего помещают в колонну ПЭМ. Таким образом, можно наблюдать их структуру непосредственно - практически так же, как в обычном оптическом микроскопе, только с несравнимо более высоким разрешением.


Просвечивающая электронная микроскопия является чрезвычайно тонким и в то же время необходимым методом надежной оценки структуры, позволяющим прогнозировать свойства материалов. Освоение современным научным и технических сообществом наноразмерных объектов еще в большей степени обозначило важность применения электронной микроскопии, в частности, просвечивающей и растровой.

Просвечивающий электронный микроскоп (ПЭМ) имеет много сходных черт со световым микроскопом и является типичным прибором составляющие части которого (источник электронов, диафрагмы (или щели), система управления пучком и юстировки, вакуумная система и т.д.) входят в состав подобных приборов.

В качестве источника электронов используется катод электронной пушки в виде нити V-образной формы (рис. 2.6).

Рис. 2.6. Схема просвечивающего электронного микроскопа. а) режим дифракции; б) режим изображения.

Материалом катода чаще всего является вольфрам. Электроны ускоряются высоким напряжением в электрическом поле электронной пушки. Для исследования металлических материалов наиболее широко применяются микроскопы с рабочим напряжением до 200 кВ. Решающее значение приобретает стабильность напряжения, от чего зависит монохроматичность изучения и, как следствие, наличие хроматической аберрации.

Для юстировки микроскопа большое значение имеет отклоняющая система, с помощью которой производится совмещение ЭП с оптической осью прибора. Наклон и смещение ЭП осуществляется магнитным полем, создаваемым электромагнитными катушками.

Образец, на который направляется ЭП, может представлять собой, например, нанопорошок закрепленный в прозрачной для электронов матрице или нанопленку, нанесенную на прозрачную для электронов основу.

Как уже отмечалось, при взаимодействии с кристаллом проявляется волновая природа электрона и происходит дифракция электронных волн на кристаллической решетке. В результате вылетевшие из нижней поверхности образца электроны будут формировать не только один проходящий не отклоненный ЭП, но и дифрагированные ЭП, отклоненные в соответствии с условием В-Б. Если ПЭМ используется в режиме дифракции, то все пучки проходят объективную линзу, в задней фокальной плоскости которой возникает дифракционная картина.

Следующий этап состоит в увеличении размеров картины проекционными линзами и в фокусировании на люминесцентный экран (рис. 2.6, а).

Если ЭМ используется в режиме изображения (см. рис. 2.6, б), то ниже объективной линзы вводится апертурная диафрагма (диаметром 0.5-20 мкм}, или пропускающая только неотклоненный ЭП в случае светлопольного изображения, или один из дифрагированных- для темнопольного изображения. Для получения высококачественных изображений требуется тщательная юстировка микроскопа.

Увеличение ЭМ составляет сотни тысяч, но это может оказаться бесполезным, если в силу каких-либо причин (плохая юстировка, аберрации, механическая и электрическая нестабильности и т. д.) низка разрешающая способность прибора.

Линзы современных ЭМ представляют собой электромагниты (рис. 2.7), в которые для более эффектного использования магнитного поля вставлены сердечники из магнитомягкого материала с полюсами. Фокусное расстояние в линзах изменяется при изменении тока.

Рис. 2.7. Характерная конструкция электронной линзы

Существенную роль для получения высококачественного изображения играют диафрагмы, изготавливаемые из тугоплавких материалов, например, тантала. Световая или конденсорная диафрагма образует тонкий пучок параллельных электронов, апертурная или объектная служит для выделения отдельных пучков, формирующих изображение, и, наконец, селекторная диафрагма необходима для выделения участков на образце, дифракция от которых интересует исследователя.

В колонне и пушке ПЭМ поддерживается высокий вакуум, кроме этого обеспечивается высокая механическая стабильность прибора и его защита от различных полей. Для создания необходимых дифракционных условий существует проблема точного и плавного наклонения и вращения образца, решаемая специальным механическим устройством - гониометром.

К достоинствам ПЭМ относятся:

Высокая разрешающая способность, возможная из-за очень малой длины волн электронов, ускоренных высоким напряжением. С помощью ПЭМ можно различать точки, отстоящие друг от друга на расстоянии долей нанометра.

Возможность анализа физической природы и количественных оценок дефектов кристаллов и других структурных элементов в силу дифракционной природы контраста на электронно-микроскопических изображениях;

Уникальная возможность исследовать одновременно изображение (морфологию) и кристаллографические характеристики структуры;

Высокая интенсивность электронного излучения, прошедшего через образец, позволяющая достаточно хорошо наблюдать и быстро регистрировать полученные изображения;

Большая глубина резкости, т. е. возможность одновременного изображения элементов структуры, находящейся в o6paзце на различной глубине. Это достоинство позволяет также широко использовать электронную микроскопию для исследования шероховатых поверхностей на отражение и с помощью реплик (слепков) на просвет.

Вся информация об объекте, освещаемом ЭП, заложена в тех изменениях, которые претерпевает ЭП при взаимодействии с веществом. Малая, даже по сравнению с межатомным расстоянием, длина волны электрона (10 -3 нм) дает основание считать, что в ЭП, рассеянном на кристалле, содержится информация о:

Расположении атомов в решетке,

Принадлежности атомов тому или иному элементу,

Несовершенствах кристаллического строения на атомном и более грубом уровнях,

Имеющиеся измерительные возможности позволяют, как правило, воспользоваться только частью этой информации, и для расшифровки изображения необходимо иметь представление о принципах его построения и о том, какая часть информации теряется.

Всякий просвечиваемый объект, тем более кристаллический, можно представить в виде периодической решетки, на которую падает параллельный когерентный пучок излучения (рис. 2.8). Для получения максимальной информации об объекте необходимо все прошедшее через него излучение без потерь предъявить наблюдателю.

Рис. 2.8. Условная схема возникновения изображения периодической решетки

Для этого используется объективная линза, располагаемая под объектом. Объектив собирает в своей задней фокальной плоскости все параллельные лучи, вышедшие из разных точек объекта, т.е. лучи, дифрагированные под одинаковыми углами. Полученные дифракционные максимумы образуют дифракционную картину, называемую первичным изображением объекта (по Аббе). Ниже фокальной плоскости лучи расходятся, и в другой плоскости - плоскости изображения сходятся уже лучи, выпущенные из одних и тех же точек объекта. Эти лучи интерферируют, образуя вторичное (действительное) изображение объекта. Чем больше дифрагированных пучков проходит объективную линзу (без искажений), тем больше соответствие изображения объекту. Для использования двух пучков, прямого и ближайшего дифрагированного удалось увидеть изображение периодических полос, соответствующих расположению атомных плоскостей решетки; использование большого количества ЭП позволило наблюдать систему пятен, соответствующих расположению атомов. Таким обрезом, чем больше ЭП участвует в изображении, тем больше деталей структуры можно выявить. Однако для привлечения многих ЭП (создания многолучевого изображения) необходимо выполнить следующие условия:

Дифрагированные пучки должны пройти сквозь отверстие малой апертурной диафрагмы. Размер диафрагмы должен быть малым в силу большой сферической аберрации магнитных линз, из-за чего участие в формировании изображения периферийных зон объективной линзы приведет к понижению разрешающей способности. Это может свести на нет преимущества многопучкового изображения и сделать невозможным рассмотрение отдельных атомных плоскостей, отстоящих на расстояния порядка долей нанометра. Поэтому для использования многих дифрагированных пучков необходимо уменьшать углы дифракции ЭП, что удается с помощью высоковольтной электронной микроскопии (U> 500 кВ);

Разрешение, которое требуется для наблюдения отдельных плоскостей или атомов, выполнимо только при высокой электрической и механической стабильности узлов прибора и требует больших усилий по выявлению и регистрации изображения.

Однако следует напомнить, что для формирования электронно-микроскопического изображения чаще всего используется только один пучок, легко выделяемый апертурной диафрагмой. При этом, естественно, не наблюдается структура кристаллической решетки, но, тем не менее, есть возможность получить информацию о более крупных структурных элементах, изменяющих условия отражения и организующих контраст (отличие деталей изображения от фона).

В приведенной модели периодической решетки эти структурные элементы можно представить как большие, по сравнению с размером атома, искажения.

Рис. 2.9. Схема формирования изображения от идеального кристалла в проходящем пучке

При наблюдении электронно-микроскопического изображения идеального кристалла нанообъекта в светлом поле (рис. 2.9) в проходящем (нулевом) ЭП можно увидеть в основном следующее:

а) поле зрения на экране в пределах кристалла светлое, это свидетельствует о том, то кристалл прозрачен для электронов;

б) поле зрения темное - кристалл для электронов непрозрачен.

То обстоятельство, что один и тот же кристалл может быть прозрачен или непрозрачен, легко объясняется условием В-Б, но при этом даже когда идеальный кристалл прозрачен, внутри кристалла не видно никаких особенностей, т.е. отсутствует контраст. Единственное, что можно заметить в данном случае, - это границы кристалла, а значит, определить только его форму и размеры.

Контраст на электронно-микроскопическом изображении в проходящем ЭП появляется в случае локального изменения дифракционных условий в кристаллической решетке и называется дифракционным контрастом. Толкование электронно-микроскопических изображений основывается на объяснении происхождения дифракционного контраста. Источником локальных изменений условий дифракции являются различные несовершенства кристаллической решетки. Остановимся на некоторых из них.

Дислокации. Присутствие дислокаций приводит к местному изгибу плоскостей решетки (матрицы) вдоль линии дислокации (рис. 2.10).

Рис. 2.10. Образование контраста от краевой дислокации а) в светлом поле б) в темном поле

При этом изогнутые участки можно поставить в отражающее положение, тогда как вся матрица будет прозрачна для прямо проходящих электронов. Это выразится в появлении на экране темной полосы, соответствующей положению проекции линии дислокации в кристалле на плоскость экрана. Дифрагированный пучок отсекается апертурной диафрагмой, причем если диафрагмой выделить именно дифрагированный пучок, а отсечь проходящий, то в поле зрения будет светлая линия дислокации на темном поле кристалла, т.е. формируется темнопольное изображение элементов структуры. Разрешение в темнопольном изображении может быть лучше, чем в светлопольном. Так как локальное изменение условий дифракции возможно при отражении ЭП только от изогнутых участков плоскостей, то, если электроны вблизи дислокации падают на решетку таким образом, что в отражающем положении находятся неискаженные плоскости, контраста на изображении не возникает и дислокация может оказаться невидимой. Отсюда вытекает правило невидимости дислокаций:

g·b = 0

где g - вектор отражения дифрагированного ЭП; b – вектор Бюргерса, показывающий направление искажения решетки, которое для краевой дислокации имеет вид

g·b x U = 0

где U вектор касательной к линии дислокации. В данной случае учитывается возникновение контраста при отрешении от плоскости скольжения, которая будет несколько изогнута дислокацией.

2. Плавные и дискретные изгибы участков кристалла, вызывающие разориентацию кристаллической решетки (рис. 2.11).

Рис. 2.11. Образование дифракционного контраста от плавно изогнутого кристалла (без учета действия объективной линзы).

При этом на экране появятся темные и светлые полосы, если изгиб плавный, то при наклоне объекта полосы будут плавно перемещаться, В случае дискретного изгиба будет наблюдаться неподвижная граница между разориентированными участками, при этом условия дифракции, а значит и контраста, будут меняться более или менее резко (дискретно).

3. Выделения и предвыделения вторичных фаз. При зарождении вторичной фазы, как правило, происходит; упругое искажение матрицы, что изменяет местные условия дифракции (рис. 2.12).

Рис. 2.12. Схема образования изображения от образца с включением; а) светлое поле, б) темное поле

Возникающие границы раздела и иные чем в матрице межплоскостные расстояния в новой фазе делают ее контрастной.

4. Вакансионные и примесные скопления. При достаточно большом скоплении вакансий или примесных атомов матрица искажается на достаточно большом протяжении, что делает заметным это скопление на изображении. Скопление вакансий может образовывать вакансионный диск. Если диаметр диска достигает достаточно большого размера, то диск "схлопывается". "Схлопывание" вакансионного диска приводит к образованию дислокационной петли, наблюдаемой в электронном микроскопе.

Другие вида контраста в рамках первичного знакомства сложны для восприятия без привлечения теории и поэтому здесь не рассматриваются.

Разрешающая способность ПЭМ как минимальное расстояние между двумя точками объекта, которое еще можно различить на изображении, зависит от следующих основных факторов:

Длины волны электронов;

Величины сферической аберрации;

Величины хроматической аберрации;

Астигматизма,

Механической стабильности и состояния прибора (вакуум, чистота и т.д.).

Малая длина волны электронов, ускоренных высоким напряжением, является, как известно, основным условием уникальной разрешающей способности электронного микроскопа, так как чем меньше длина волны, тем меньше элементы структуры объекта, на которых может происходить дифракция волн, т.е. тем ниже оптическая однородность среды для волн данной длины.

Длина волны электрона l определяется, исходя из известных соотношений:

U·e = 1/2m·v 2

где e - заряд электрона; m . - масса движущегося электрона; U - ускоряющее напряжение; v - скорость электрона.

С другой стороны, по формуле Де-Бройля.

h = m·v ·l

Отсюда можно получить

l =h/(2m·U·e ) -2

Подставляя численные значения, получим простое выражение:

l =1,226/(U) -2 (нм)

Величина сферической аберрации оптической системы определяется сферической аберрацией объективной линзы. Неизбежная неоднородность радиальной составляющей магнитном поля в линзе (рис. 2.7) (на периферии напряженность больше, чем у оси). Это приводит к неравенству фокусных расстояний линзы для приосевых и периферийных электронов (рис. 2.13).

Рис. 2.13. Схема сферической аберрации

Поэтому для построения изображения используются, как правило, только приосевые электроны, остальные отсекаются апертурной диафрагмой. Однако величину диафрагмы нельзя сделать сколь угодно малой, так как при уменьшении отверстия диафрагмы уменьшается доля информации, которая переносится ЭП на экран. В частности, если пройдет только один неотклоненный или только дифрагированный пучок, то пропадет информация о самых малых объектах, которые может различить микроскоп - атомах. Таким образом, с одной стороны, разрешение ограничено самим прибором и нужно уменьшать отверстие апертурной диафрагмы, с другой стороны, разрешение ограничено необходимостью для различения самых малых объектов пропустит через диафрагму не менее двух пучков. Значит, для демонстрации предельного разрешения существует оптимальный размер диафрагмы. Здесь следует отметить, что ПЭМ часто используется именно для получения изображения только в одном пучке, когда контраст создается расчет удаления части интенсивности электронных волн в местах, где несовершенства структуры объекта меняют дифракционные условия. Такой контраст называется амплитудным. При этом не требуется, как правило, наивысшей разрешающей способности.

Может иметь значение также, так называемая дифракционная ошибка, заключающаяся в том, что пучок, падающий на объект, не может быть строго параллелен, а расходящийся пучок при дифракции даст также расходящийся дифрагированный ЭП. При этом точка на объекте превратится в пятно на экране, а два близко расположенных пятна сольются в одно, т.е. будут неразрешимы отдельно друг от друга.

Изображении в двух и более пучках возникает в условиях так называемого фазового контраста, когда в плоскости изображения интерферируют пучки, прошедшие в отверстие апертурной диафрагмы (рис. 2.8).

Но тогда отверстие диафрагмы должно быть достаточно большим и появляется проблема сферической аберрации объективной линзы.

Большое, влияние на качество изображения оказывает также хроматическая аберрация, обусловленная тем, что электроны в ЭП имеют некоторый разброс по скоростям. Вследствие этого они по-разному преломляются в объективной линзе и дают размытость на изображении. Борьба с этим видом искажений заключается в повышении стабильности ускоряющего напряжения и тока в линзах микроскопа, но некоторой влияние на скорость электронов может оказать и сам образец, с чем, естественно, бороться невозможно.

Астигматизм изображения выражается в том, что такой объект, как круглое отверстие в образце, на экране будет выглядеть эллипсом. Это особенно проявляется при не осевом освещении объекта; возникновение этого дефекта связано в неоднородностью магнитного поля линз из-за несовершенства геометрической формы наконечников, с неоднородностью магнитных свойств материала наконечников, а также с возможным загрязнением. Астигматизм в некоторой степени устраняется стигматорами - специальными устройствами, накладывающими на основное поле линз слабое эллиптическое поле, амплитуда и направление которого регулируются, компенсируя астигматизм.

Появление высоковольтных ПЭМ с напряжением 1-3 мВ позволило существенно увеличить толщину просвечиваемой фольги, максимально приблизить ее структуру к структуре массивного образца, а кроме того удалось наблюдать процессы изменения структуры, фазовых превращений, упорядочения и т.д. непосредственно в колонне микроскопа в условиях, аналогичных массивному образцу. Использование высокого напряжения позволяет получить многолучевые (до 100 ЭП) изображения с разрешением отдельных атомов кристаллической решетки и даже отличить атомы различных элементов, в таких объектах, как тонкие пленки химических соединений.

Если ЭП направить на фольгу с таким расчетом, чтобы прошедший и дифрагированный пучок составляли с оптической осью микроскопа один и тот жe угол (рис. 2.14), то при прохождении этих двух пучков через апертурную диафрагму и объектив на экране возникает интетерференционная картина от их взаимодействия.

Рис. 2.14. Получение двухлучевого изображения наклоноэлектронного пучка

При использовании больших увеличений (около 500000) можно увидеть периодическую структуру, расшифровка которой дает определенные сведения о расположении атомных плоскостей в кристаллической решетке образца. Если в формировании изображения участвуют не два, а несколько ЭП, то можно рассмотреть отдельные атомы в кристаллической решетке и даже отличить атомы, принадлежащие разным элементам. Созданию многолучевых изображений способствует повышение ускоряющего напряжения. Наличие дефектов отражается на контрасте изображения, например, так были впервые увидены обрывающиеся атомные плоскости и тем самым доказано существование дислокаций. Этот метод применяется также для определения предельной разрешающей способности данного электронного микроскопа.

Методика слабого пучка. Так называется способ получения темнопольных электронно-микроскопических изображений при действии отражения, значительно отклоненного от точного В-Б отражающего положения и, следовательно, обладающего малой интенсивностью. Основное достоинство методики состоит в том, что при таких дифракционных условиях формирования изображения существенно снижается ширина контраста от дислокаций и других очагов локальных искажений кристаллической решетки. Кроме того, удается приблизить изображение дефектов на электронно-микроскопическом снимке к их истинному положению в кристалле, а также существенно упростить контраст от наблюдаемого дефекта вследствие уменьшения динамических эффектов рассеивания. Эти обстоятельства делает методику слабого пучка одним из наиболее эффективных для электронно-микроскопического анализа реальной структуры нанообъектов, особенно с высокой плотностью всевозможных дефектов.

Методика эффективна при разрешении отдельных близко расположенных дефектов. Такая ситуация может сложиться, когда в нанообъектах возникает высокая плотность дефектов, в частности, в результате мартенситного превращения, пластической деформации значительных степеней или, когда линейные дефекты соединены другим высокоэнергетическим пленарным дефектом, например, частичные дислокации, соединенные, дефектом упаковки, или сверхструктурные дислокации, в которых единичные дислокации соединены полоской антифазной границей.