Какими физическими параметрами определяются режимы контактной сварки. Точечная сварка сопротивлением. Общая схема образования соединения

Основными программируемыми параметрами процесса точечной или роликовой сварки являются ток, усилие сжатия электродов, продолжительность их действия и геометрия рабочей поверхности электродов. Параметры процесса, как принято, будем считать заданными, если они указаны для единичного цикла формировании отдельной сварной точки как в случае точечной, так и роликовой сварки. В связи с тем, что получение сварного соединения с заданными прочностными свойствами, в большинстве случаев, тождественно получению соединения и заданными размерами зоны расплавления, диаметр ядра и проплавление будем применять в качестве критерии качества процесса. Это позволяет исключать из рассмотрения конструкцию сварного узла, металлургические Особенности формирования соединения и т.п.

Известно, что при роликовой и точечной сварке возможно достаточно большое сочетание величин тока и усилии, которые удовлетворяют задаче формирования литого ядра с заданными размерами. Это свидетельствует о том, что параметры процесса неоднозначно зависят от свойств свариваемого металла и его толщины. Их величина и поле допуска зависят от режима сварки и применяемого оборудовании. В ряде случаев именно оборудование предопределяет режим сварки. При всех прочих равных условиях, как стабильность свойств металла, качество его подготовки, идентичность электродов и др., наиболее стабильные результаты по сварке многих металлов поручаются на машинах, работающих с использованием энергии, запасенной в конденсаторах. Если режимы сварки, характерные для конденсаторных машин, применять при сварке на низкочастотных машинах, то результаты будут нестабильными. Допуск на разброс величины тока и продолжительность его действия, автоматически заданные исходя из режима сварки на конденсаторной машине, не могут быть выдержаны при сварке на низкочастотной машине. Поэтому для ослабления тесноты связи с размерами ядра тех параметров процесса, которыми в данной ситуации точно управлять не удается, режим сварки изменяют, удовлетворяя минимальным требованиям, предъявляемым к качеству. В приведенном примере нестабильность амплитуды тока и продолжительности его действия компенсируется тем, что переходят к мягким режимам, т.е. снижают несколько амплитуду тока и увеличивают продолжительность его действия. Такое изменение не является улучшением, несмотря на увеличение допуска на амплитуду тока и продолжительность его действия, так как более жесткими становятся требования к другим параметрам процесса, например к геометрии рабочей поверхности электродов. Кроме того, увеличивается частота заправки электродов, уменьшается их стойкость.

Предпочтительные, рекомендованные режимы отражают как свойства свариваемых металлов, так и возможности по управлению процессом, т.е. преимущества и недостатки имеющегося оборудования. В связи с тем, что обоснование и выбор режима сварки является самостоятельной задачей, способы решения которой достаточно полно рассмотрены в литературе, будем считать режимы сварки заданными. Допустимые отклонения параметром процесса примем равными тем отклонениям, которые разрешаются для оборудования контактной сварки.

Существует много технических приемов задания параметров процесса через параметры цикла, в том числе от дельных интервалов времени между командами на исполнительные устройства сварочной машины. Однако с точки зрения обеспечения технологического цикла сварки отдельной точки можно выделить самостоятельные этапы, отвлекаясь от технических особенностей устройств управления.

Циклограмма, приведенная на рис. 1, отражает особенности задания параметров процесса через параметры цикла. Можно считать, что каждый этап и соответственно каждая величина, характеризующая его, является самостоятельным параметром, так как имеет отличное целевое назначение. Очевидно, что на отдельных этапах цикла величины допусков для тока и усилия будут различными. Время необходимо для того, чтобы электроды машины успели переместиться и сжать металл с вполне определенным усилием. На этом этапе к устройствам, отсчитывающим интервал времени, не предъявляется жестких требований. Аналогично, в тех случаях, когда применяется предварительное, обжатие, интервал, в течение которого электроды вжимают металл с повышенным усилием , также можно выдерживать с невысокой точностью. Эти требовании распространяются и на устройства, задающие время сжатии металла по окончании действия тока а также на интервал, соответствующий разомкнутому состоянию электродов . Как правило, указанные интервалы цикла в условиях производства не контролируются. Установившими усилия сжатия электродов и оказывают существенное влияние на качество сварных соединений и поэтому подлежат обязательному контролю, хотя допустимые отклонения их от заданного значения для , , различны.

Рис. 1 . Типичная циклограмма процесса точечной сварки

Длительность нарастания ковочного усилия является одной из основных характеристик привода усилия сжатия электродов и может оказывать сильное влияние на образовании макродефектов в литой зоне соединения. Вследствие инерционности механизма сжатия электродов основное стремление состоит в увеличении скорости нарастания усилия . У лучших образцов машин составляет не более 0,02 сек, считая от момента подачи команды на исполнительный механизм до момента времени, когда достигло уровня 2/3 от установившегося. Важным параметром цикла является интервал , определяющий момент включении ковочного усилия по отношению к импульсу сварочного тока . В связи с тем, что даже относительно малая нестабильность этих параметров цикла существенно влияет на качество соединения, их необходимо периодически контролировать.

Особое значение имеют временные интервалы цикла , и , характеризующие программу изменения тока, а также величины тока и . Однако точность зада ния параметров цикла и , может быть меньше, чем и .

В результате исследовательских работ и производственного опыта по точечной и роликовой сварке установлено, что в большинстве случаев можно принять следующую необходимую точность (в %) воспроизведения сварочной машиной основных этапов цикла (см. рис. 1):

Величина сварочного тока,

Длительность импульса сварочного тока,

Величина дополнительного импульса тока,

Длительность дополнительного импульса тока,

Пауза между импульсами,

Включение ковочного усилия,

Пауза между импульсами при роликовой сварке

Сварочное усилие,

Ковочное усилие, (усилие обжатия, )

Приведенные значения допустимых отклонений параметров справедливы для тех случаев, когда сварка осуществляется на режимах, оцениваемых как предпочтительные. Все случайные отклонения параметров должны находиться внутри поля допуска. Предполагается, что распределение плотности вероятных отклонений близко к нормальному распределению. Применяя контрольно-измерительную аппаратуру и статистически обрабатывая данные измерений, можно в каждом конкретном случае в зависимости от ответственности данного изделия задаться числом допустимых предельных отклонений параметров. Ориентировочно в среднем число точек, при котором любой из параметров принимает один раз предельное допустимое значение, не должно быть слишком большим, например, 1 раз на 100…200 точек. Малое допустимое среднеквадратичное отклонение параметров процесса объясняется тем, что вероятность брака зависит от совокупности отклонений всех параметров процесса в целом. Кроме того, сварочное оборудование, как правило, является универсальным и рассчитывают его так, чтобы можно было сваривать детали не только из одного конкретного металла, а из совокупности металлов, для каждого из которых требования к точности задания хотя бы одного параметра были наиболее высокими. Обычно, в реальных условиях указанные предельные отклонения параметров не приводят к браку.

Например, на рис. 2 приведены частные данные, характеризующие стабильность процесса сварки деталей толщиной 1,5+1,5 мм из сплава Д16. Предельные отклонения параметров процесса, вызывающие недопустимое снижение качества сварки, находятся вне поля допуска, указанного выше. Предположим, что разброс параметров сварочной машины не превышает границы допуска. Ситуации, при которой возможно недопустимое снижение качества, возникает лишь в том случае, когда два или большее число параметров одновременно принимают предельно допустимые значения. Равновероятны такие неблагоприятные события: уменьшился на 5%, возросло на 10%; возрос на 5%, увеличилось на 10%; и возросли на 5%; и уменьшились на 5%; возросло на 10%, уменьшилось на 5%; уменьшилось на 10%, увеличилось на 5%; уменьшилось на 15%, увеличилось на 5%; уменьшился на 5%, радиус электродов увеличился с 75 до 200 мм; увеличилось на 10%, а радиус электродов увеличился с 75 до 200 мм. Пусть, вероятность того, что в названных ситуациях возникает брак, равна 0,5, а предельные отклонения параметров процесса случаются в среднем 1 раз на 50 точек. Тогда на каждую тысячу точек в среднем хотя бы две точки не будут соответствовать принятому стандарту.

Предположим, что на 200 точек случается одно отклонение каждого параметра, выходящее за границы допуска и с вероятностью 0,9 можно утверждать, что при этом появляется брак. Тогда вероятность появления брака резко возрастает и составляет примерно 3% от общего числа точек.

Возможные случайные отклонения в подготовительных операциях, например ухудшилось качество травления поверхности, плоха подгонка деталей, имеет место разнотолщинность, металла, изменились его физические свойства, способствуют увеличению общего числа случаев брака.

При статистическом анализе производства деталей из сплава АМг6 наблюдался разброс параметров процесса, оцениваемый среднеквадратичными отклонениями: ; , рабочей поверхности электродов , сопротивления деталей после травления . Количество точек, не соответствующие принятому стандарту, составило 5% общего числа точек. Очевидно, что к измерительной и контрольной аппаратуре предъявляются весьма высокие требования по точности, так как предельно допустимые отклонения параметром в ряде случаев менее 5%. Измерительная аппаратура должна обеспечивать точность на несколько классов выше. К сожалению, при разработке даже специализированной аппаратуры не всегда удается полностью удовлетворить эти требования. Поэтому при рассмотрении приборов и устройств высказаны замечания о целевом назначении и области применения отдельных устройств, которые имеют несколько худшие показатели точности, и не удовлетворяют решению вопроса в целом, но с успехом могут применятся при решении частных задач.

Устанавливается следующими основными параметрами: силой или плотностью тока, временем нагрева, давлением, диаметром рабочей части электрода. Кроме того, часто задается время предварительного сжатия электродов t сж, время проковки t np форма рабочей части электрода и материал для его изготовления. Режимы специальных видов точечной сварки имеют еще некоторые дополнительные параметры.

Точечная сварка малоуглеродистой стали, как и , может производиться в очень широком диапазоне изменения параметров, однако каждому варианту режимов соответствует свое определенное соотношение параметров между собой.

Мягкие режимы характеризуются малой силой тока и большим временем нагрева, для жестких режимов сила тока большая, время нагрева - с варианта режима должен производиться с учетом конкретных условий производства и требований к сварочному соединению.

Сваривание точечной сваркой

Особенности названных вариантов точечной сварки

  1. Мягкие режимы

Сварка на мягких режимах сопровождается образованием широкой зоны разогрева, что облегчает деформирование металла и позволяет ограничиться не очень высокими требованиями к точности правки заготовок, как при жестких режимах.

  • Так как время нагрева повышено, степень влияния теплоты от быстро исчезающего контактного сопротивления на общий нагрев здесь несколько снижается.
  • Поэтому могут быть снижены н требования к тщательности подготовки поверхности заготовок.
  • Мощность электрическая я механическая при сварке на мягких режимах требуется более умеренная, чем при сварке на жестких режимах.

Точ. сварка

  1. Жесткие режимы

Жесткие режимы обеспечивают более высокую производительность и меньший расход энергии. Ввиду того, что поверхность деталей под электродами при жестких режимах нагревается сравнительно меньше, электроды нагреваются слабее в, несмотря на рост давления, расход их снижается. Заметно уменьшается глубин2 вмятая в месте сварки и коробление изделия. В целом жесткие режимы целесообразны, прежде всего, в массовом производстве, где выигрыш в производительности и расходе энергии полностью окупит дополнительные расходы, связанные с приобретением, эксплуатацией и питанием более мощного оборудования.

Сила и плотность тока.

С увеличением толщины свариваемых листов сила тока должна повышаться. Для сварки низкоуглеродистых сталей средней толщины на серийных машинах ориентировочный выбор силы тока l может осуществляться по следующему соотношению:

l =6500qa ,

Где q толщина свариваемых листов в мм.

При сварке листов различной толщины выбор параметро производится во условию достаточности нагрева и деформации более тонкого листа. Потому а приведенном соотношении и в последующих величина q отнесена к более тонкому листу.

Плотность тока I для жестких режимов выбирается в пределах 120 — 360 д/Лм*, для мягких 80- 160 а мм2.

С увеличением толщины листов плотность то/? снижается. Когда металл свариваемых деталей обладает повышенной тепло- и электропроводностью, плотность тока должна увеличиваться. Так, при сварке алюминия или его сплавов плотность тока иногда достигает 1000 а/мм2 и выше. Как упоминалось ранее, плотность тока должна выбираться большей, когда по каким-нибудь соображениям давление принимается повышенным.

Контактная точечная сварка

Время нагрева

Как и сила тока, время нагрева (tcs) возрастает с увеличением толщины деталей. Ориентировочно для сварки малоуглеродистой стали на жестких режимах время нагрева может выбираться по соотношению

tce - (0,1 -f-0.2) q сек.,

где q - толщина более тонкого листа в мм.

Для сварки листов толщиной до 3 мм на мягких режимах подбор времени нагрева может производиться пo соотношению.

I = (0.8×1) q сек.

Слишком длительный нагрев может вызвать перегрев металла в зоне сварки.

Для сварки металлов с высокой теплопроводностью время сварки принимается малым (при большой силе тока), при сварке закаливающихся сталей, наоборот, во избежание образования закалочных трещин при быстром охлаждения время нагрева часто приходится увеличивать (при соответствующем снижении тока).

Ход точечной сварки

Давление

Выбор давления (P) производится в зависимости от толщины, состояния и материала заготовок, а также от характера принятого режима нагрева.

Для сварки малоуглеродистой стали давление в зависимости от толщины выбирается do формуле

P=(60×200)q кг.

где q -толщина в мм.

Удельное давление имеет предел Зх10 кг/мм2.

Мягкую горячекатаную сталь возможно спаривать при меньших давлениях. Холоднокатаная сталь, получившую повышенную твердость наклепа, требует некоторого повышения давления (на 20-30%). Когда заготовки плохо выправлены и имеют коробления, то, прежде чем плотно сдавить листы на участке сиамки, приходится произвести правку под электродами. Общее требуемое усилие а этом случае должно быть увеличено, особенно при больших толщинах. Так, для листов толщиной 3-6 мм только это дополнительное усилие составляет 100-400 ке. По этой же причине усилие должно возрастать и тогда, когда точки располагаются о тех местах свариваемого узла, где сдавливание листов затруднено (вблизи ребер и других элементов жесткости, а местах сопряжения деталей но радиусу и т. д.).

Удельное давление возрастает вместе с прочностью свариваемого металла. При сварке низколегированных сталей оно может составить 120-160% к удельному давлению для малоуглеродистой стали, при сварке аустенитно и жаропрочных сталей и сплавов но повышается в 2-3 раза.

  • Диаметр электрода. Диаметр электрода (d) определяет плотность тока, удельное давление и степень интенсивности охлаждения поверхности детали.
  • На элек­трическое сопротивление зоны сварки диаметр электрода влияет относительно мало, лишь в конечной стадии на- грела, когда достигается полное соприкосновению поверхностей электрода и детали.
  • Поэтому яри длительном нагреве влияние диаметра электрода сказывается сильнее. Диаметр электрода возрастает с толщиной деталей.
  • Для толщины до 3 мм диаметр электрода рассчитывается но следующей формуле:

D=2 q+3мм,

где q - толщина более топкого листа.

Для деталей с большей толщиной расчет ведется по формуле

Изменением диаметра электрода часто пользуются для выравнивания нагрева отри сварке деталей, неодина­ковых по толщине или по роду металла.

В ходе процесса сварки под влиянием сильного нагрева и большой механической нагрузки рабочая часть электрода меняется с образованием грибовидною утолщения, а поверхность загрязняется окислами металла. Увеличение фактического диаметру электрода при неизменных силе тока и усилии сжатия означает снижение плотности тока и удельного давления. Вследствие этого интенсивность нагрева в сварочном контакте сильно уменьшается, а уплотнение металла затрудняется и сварка может оказаться некачественной. Кроме того, загрязнение поверхности электродов может вызвать увеличение переходного сопротивления, перегрев и даже оплавление поверхности листов. Обычно считают, что связанное с износом возрастание диаметра более чем на 10% уже недопустимо. Такие электроды должны зачищаться напильником, специальным приспособлением или перетачиваться.

Время предварительного сжатия

Пол временем предварительного сжатия понимается от начала приложения давления до начала нагрева. Оно должно быть достаточным, чтобы механизм сжатия успел свести электроды и развить давление до заданной величины. Этот параметр непосредственного влияния на тепловые процессы при сварке не имеет. Для повышения производительности данный параметр следует сокращать, насколько позволяет скорость работы механизма сжатия.

Время проковки

Время проковки (tnp) определяется длительностью нахождения уже сваренной точки под сжимающим воздействием электродов. Этот параметр влияет на скорость охлаждения металла после сварки, так как после нагрева, в условиях плотного соприкосновения электродов и детали, тепло от зоны сварки особенно быстро отводится в электроды.

При сварке закаливающихся сталей ускоренное охлаждение может вызвать появление трещин и время проковки поэтому следует уменьшать.

Однако во всех случаях давление не должно сниматься ранее некоторого времени, необходимого для полного затвердевания и упрочнения ядра. В противном случае деформированные при сварке листы, стремясь упруго возвратиться в начальное положение, могут разрушить еще не остывшее ядро, С повышением толщины время проковки возрастает, так как объем нагретого металла и время охлаждения увеличиваются.

Это соединение металлов путем плавления и сжимания их при помощи тока в одной или нескольких точках. Современный аппарат контактной точечной сварки обеспечивает высокую производительность, качество и надежность работы, а также является экологически чистым, что тоже немаловажно. Данный вид сварки используется во многих сферах производства, очень часто, например, - при сварке металлических листов в автомобилестроении или на производстве для изготовления различных сеток и каркасов. Точечная сварка как процесс легко поддается механизации и автоматизации, позволяя снизить затраты на трудоемкий труд рабочих.

Оборудование контактной точечной сварки имеет разветвленную классификацию: машины делятся на стационарные и подвесные, с односторонним и двухсторонним подводом тока; с пневматическим и пневмогидравлическим механизмом сжатия электродов; по количеству одновременно свариваемых точек станок контактной сварки может быть одноточечным, двухточечным и многоточечным (последний - самый производительный).

Вне зависимости от типа и вида, всякая машина контактной точечной сварки имеет электрическую и механическую части, пневмо- или гидросистему и систему водяного охлаждения. Процесс сваривания осуществляется таким образом: металл нагревается в месте пересечения стержней, оплавляется и под действием сжимающих усилий происходит скрепление стержней. Прочность сварки в данном случае будет зависеть от размеров сварной точки, которые в свою очередь обусловлены формой и размерами контактной поверхности электродов, силой тока, временем его протекания, а также от силы сжатия и поверхности свариваемых деталей.

Станок точечной сварки целесообразно использовать, если требуется выполнить работы с деталями малых размеров. Контактная точечная сварка не слишком энергозатратный процесс, зато позволяет добиться высокой надежности соединений.

Принцип контактной сварки - обязательное использование в течение точно рассчитанного времени тепла и двустороннего давления.
Электрический ток возникает между двумя катодом и анодом, которые сжимают две металлические пластины. При этом в точке сжатия создается слой расплавленного металла, что обусловлено повышением температуры, вызванным сопротивлением металла электрическому току. Как правило, электроды изготовлены из сплава с высоким содержанием Cu, поскольку медь характеризуется меньшим сопротивлением электричеству. Дополнительным фактором, способствующим соединению и препятствующим выплеску жидкого металла из сварочной ванны, служит механическое давление, производимое катодом и анодом.

Оборудование контактной сварки состоит из следующих узлов:

  • Сварочный трансформатор, заключенный в жесткий корпус;
  • Электроды, подсоединенные к сварочному трансформатору проводниками;
  • Узел передачи давления электродов на соединяемые пластины;
  • Узел регулировки сварочного тока;
  • Реле, прерывающее подачу электроэнергии на трансформатор;
  • Устройство контроля времени (таймер);
  • Радиатор для водяного охлаждения электродов.

Металлы, используемые в промышленности, имеют разные характеристики сопротивления электрическому току. Разнится и время, необходимое для расплавления металла в точке соприкосновения.

Аппарат контактной точечной сварки устроен таким образом, что весь процесс протекает в четыре этапа:

  • Сжатие без подачи электрического тока;
  • Подача сварочного тока;
  • Удержание, при котором электроды остаются в прежнем положении после отключения сварочного тока и продолжают оказывать механическое давление;
  • Отключение.

Сварочный аппарат контактной точечной сварки может быть двух типов - трансформатор и выпрямитель. В первом случае устройство работает от сети переменного тока. Трансформатор, входящий в схему, преобразовывает высокое электрическое напряжение в низкое (1,0 - 25,0 V). Второй тип оборудования использует принцип выпрямления переменного электрического тока и преобразования его в постоянный. Данные устройства более эффективны, поскольку возможно продуцирование более высокого сварочного тока. Кроме этого, выпрямители менее требовательны к первичному электропитанию.
Обязательным условием качественной сварки является контроль времени воздействия и механического давления, оказываемого сварочными электродами.

Способом контактной точечной сварки соединяют следующие металлы:

  • Холоднокатаная сталь;
  • Сталь с токопроводящим покрытием;
  • Хромоникелевая сталь;
  • Алюминиевые сплавы;
  • Медные сплавы - только тонкие листы с обязательным тестированием.

Особенности применения разных способов контактной сварки

В настоящее время одним из самых производительных методов получения неразъемных соединений является контактная сварка . Применяется оборудование, в том числе машина точечной сварки, в различных отраслях промышленности, благодаря методу можно достичь высокой степени механизации, автоматизации, роботизации производства. Любой аппарат контактной сварки использует следующий принцип - кратковременный нагрев деталей до пластичности электрическим током с одновременным применением усилия сжатия. Скорость нагрева и пластической деформации при этом высока. В промышленности распространены несколько способов контактной сварки. Аппарат точечной сварки используется приблизительно в 80-ти процентах соединений. Метод широко применяют в радиоэлектронике, производстве автомобилей, вагоно- и самолетостроении, строительстве. К примеру, конструкция современного авиалайнера насчитывает миллионы сварных точек. Толщины свариваемых деталей варьируют от нескольких микрон до 0,03 м.

Стыковая сварка, занимая второе место (около 10%) оплавлением применима в строительстве трубопроводов, железнодорожных путей, автомобильной промышленности. С помощью метода соединяют бесстыковые ж/д- пути, трубы разного диаметра, ободья колес. Диапазон используемых материалов достаточно широк - конструкционные стали, латунь, сплавы цветных металлов.

На третье место по области применения (~ 7%) выходит шовная контактная сварка. Особенно хорошо себя зарекомендовал метод при производстве герметичных резервуаров, в том числе таких, которые предполагается использовать под давлением. С помощью шовной сварки изготавливают топливные баки самолетов, автомобилей, плоские отопительные радиаторы, емкости стиральных машин, холодильные шкафы и пр. Метод позволяет получать надежные соединения, способные выдерживать высокие нагрузки в условиях вакуума или крайне высокого давления. Метод стыковой сварки сопротивлением используется с ограничениями, поскольку равномерный нагрев торцевых окончаний обеспечить не удается. Вследствие этого надежный контакт по всей поверхности стыка не может быть получен. Применяют способ при соединении изделий малого круглого сечения (проволоки, стрежней, труб и пр.). Около 3% соединений приходится на рельефную сварку. Как пример использования метода, можно указать: в автомобилестроении - крепление к капоту транспортных средств скобы; в радиоэлектронике - крепление к тонким деталям проволоки и пр.


Настройка контактных машин заключается в подготовке машины к работе, выборе режима сварки и настройке машины на этот режим, поддержании режима путем сохранения постоянных величин параметров сварки.
Основными параметрами при точечной и рельефной сварке являются сварочный ток, время протекания тока, усилие на электродах. При автоматической работе машины учитывается время опускания верхнего электрода и сжатия электродами свариваемого изделия, время проковки металла сварной точки после выключения тока и время паузы, необходимое для подъема верхнего электрода, освобождения свариваемого изделия и его съема или передвижения.
При шовной сварке учитывается время сварки и паузы между импульсами тока и скорость движения изделия.
При сварке на стыковых машинах в число основных параметров входят также установочная длина, общая величина осадки, величина осадки под током и без него, скорость оплавления и осадки.
При точечной и шовной сварке сварочный ток подбирают в зависимости от толщины свариваемых деталей. Изменение сварочного тока производится переключателями ступеней сварочного трансформатора. При работе на машинах, снабженных прерывателями тока, более тонкое регулирование тока осуществляется путем изменения угла поджигания игнитронов.
В зависимости от материала и конфигурации свариваемых деталей сварку можно вести на жестких и мягких режимах. Жесткие режимы сварки характеризуются большими токами и усилиями на электродах, малой длительностью сварки. Применение жестких режимов позволяет по сравнению с мягкими режимами увеличивать темп работы машины и получать более качественные сварные соединения.
Время сварки в современных машинах регулируется в широком диапазоне с помощью электронных регуляторов времени и других выключающих устройств.
В стыковых машинах большое значение имеет усилие осадки. Если для выбранного сечения деталей усилие осадки недостаточно, добиться стабильности результатов сварки нельзя.
При настройке стыковой машины следует обращать внимание, чтобы ток не выключался раньше начала осадки. Для этого необходимо предусматривать величину осадки деталей под током.
Установочную длину можно регулировать положением подвижной плиты относительно неподвижной. Изменение установочной длины приводит к нарушению режима сварки.
При стыковой сварке ток подбирается по сечению свариваемых деталей.

Популярные статьи

   Стеклоблоки - элитный материал

В.Г. Квачев (Институт кибернетики АН УССР)

Контактная точечная сварка - один из самых производительных способов соединения металлов. В связи с широким использованием ее в массовом производстве и отсутствием совершенных методов неразрушающего контроля особое значение приобретает строгое соблюдение требований, предъявляемых к технологическому процессу на этапах подбора режима, подготовки материалов под сварку, сборки деталей и т.д. При этом подбор оптимального режима сварки определяет воспроизводимость заданного качества соединений. Нетрудно показать, что при прочих равных условиях и постоянной колеблемости основных параметров режима функция стабильности качества y = f ( x 1, x 2… x n ) - параметры режима, зависит от соотношения этих параметров и имеет максимум в области оптимальных режимов сварки.

При точечной сварке материала определенной толщины режим задается временными зависимостями сварочного тока I св (t) и усилия сжатия F c ж ( t ), а также размерами и формой контактной поверхности электродов.

Рядом исследователей предложены формулы для расчета тока, как основного параметра, обусловливающего выделение тепла при сварке . Однако попытки их практического использования сопряжены с известными трудностями, вызванными сложностью расчетов и несовпадением полученных данных с практическими результатами . В последнее время для определения режимов сварки применяют теорию подобия или метод обобщенных переменных .

Однако существующие аналитические методы позволяют лишь предварительно оценить область изменения параметров режима, окончательный выбор которых требует существенного экспериментального корректирования.

Результаты корректирования расчетных и табличных значений параметров практически всецело зависят от квалификации технолога- сварщика, его опыта и методики, используемой при подборе режима. Естественно, такой подход привносит субъективный фактор, что зачастую приводит к непроизводительным затратам времени и материалов.

Выбор и корректирование режимов сварки - типичная задача оптимизации, т.е. нахождения наилучших в определенном смысле значений параметров режима. При заданном критерии качества (обычно это диаметр ядра (d я или разрывное усилие) задача оптимизации заключается в определении параметров, принадлежащих некоторой области допустимых значений и обеспечивающих экстремум выбранного критерия.

При наличии аналитической зависимости между управляющими параметрами режима и критерием качества решение этой задачи не составляет особого труда. Однако недостаточная изученность процесса сварки, большое количество параметров и случайный характер возмущений не позволяют получить достаточно точного аналитического описания. Поэтому оптимальные параметры режима могут быть определены с помощью методов математического планирования экспериментов, основанных на обработке данных, которые получены непосредственно на действующем объекте. При этом в отличие от аналитического исследования осуществляется локальное изучение поверхности отклика по результатам некоторого набора экспериментов, В результате ряда последовательных процедур изучения поверхности отклика получают его экстремальное значение, причем эксперименты планируются таким образом, чтобы минимизировать количество опытов и время, затрачиваемое на поиск экстремума. Обычно наиболее эффективно использование факторных методов планирования, получивших в последнее время широкое распространение при исследовании технологических процессов.

Для решения поставленной задачи был применен метод последовательного симплекс-планирования . Основная идея его заключается в том, что поверхность отклика в некоторой области аппроксимируется линейным приближением с помощью минимального числа экспериментальных точек, образующих симплекс, и движение по этой поверхности в поисках оптимального значения осуществляется путем отбрасывания вершины симплекса с меньшим откликом и построения новой, являющейся зеркальным отображением отброшенной. Это позволяет совместить процесс из учения поверхности отклика с перемещением по ней. Достигнув области экстремума, симплекс начинает вращение вокруг вершины максимальным откликом. Это свидетельствует о том, что все остальные вершины, определяемые соотношением исходных параметров, дают меньший по сравнению с дентальной выход и используются для определения окончания процесса оптимизации.

Более подробное описание алгоритма метода симплекс-планирования будет рассмотрено ниже. Здесь же необходимо отметить основные достоинства, обусловившие выбор этого метода для решения задачи:

1) использование его не требует специальных математических знаний. Вычисления крайне просты, все приемы формализованы, поэтому метод пригоден как для ручной, так для машинной реализации;

2) направление движения определяется не точными количественными значениями отклика, а лишь соотношением между ними. Это особенно важно в случае затруднений при измерении показателя качества сварки;

3) ввиду того, что перемещение симплекса основывается на качественной информации не нужно предъявлять слишком высокие требования к точности поддержания и измерения значений параметров, соответствующих координатам вершин. Это позволяет использовать метод непосредственно в производственных условиях, где измерение и поддержание значений параметров с высокой точностью затруднены.

Ниже на примере выбора оптимального режима точечной сварки материала Д16АМ мм на низкочастотной машине показана методика применения симплекс-планирования. Эксперимент планировался для двух независимых переменных режима: максимального значения импульса сварочного тока I св max и усилия сжатия электродов F сж . Остальные параметры (время сварки, диаметр электро да d э радиус его заточки R з и т.д.) поддерживались на заданном уровне.

На основании данных таблиц рекомендованных режимов выбирались диапазон изменения каждой из переменных: 25 кА I св max 35 кА, 280 кг сж 400 кг – интервал варьирования ; величина кА, кг.

В качестве критерия оптимизации принимали диаметр ядра сварной точки. Переменные режима измерялись с помощью специализированной аппаратуры .

Симплексом, как известно, называется простейшая выпуклая геометрическая фигура, обладающая минимальным количеством вершин n +1, где n - число исследуемых переменных. В рассматриваемом случае при n =2 регулярный симплекс представляет собой равносторонний треугольник, координаты вершин которого в пространстве исследуемых переменных определяют план опытов.

Начальный симплекс строился для режима I св max = 175. F сж = 120 . Ввиду того что предварительная оценка направления движения затруднена, ориентация первоначального симплекса произвольна. Поэтому расположим его сторону А 1 А 2 параллельно оси тока (рисунок, а). Учитывая выбранные интервалы варьирования параметров и пользуясь матрицей планирования , строим начальный симплекс A 1 A 2 A 3 . Результаты опытов в вершинах симплекса (табл. 1) показали, что минимальное значение диаметра ядра дает режим, определяемый точкой А 2 . Поэтому для осуществления движения в направлении увеличения отклика необходимо отбросить точку А 2 и на оставшейся стороне А 1 –А 3 достроить новый симплекс путем добавления точки А 4 .

Координаты новой точки определяются следующим соотношением:

A ji =2/n (A 1i + A 2i + …+ A ji + …+ A k +1. i ) - A ji

i =1, 2, 3,…, k .

Здесь первый индекс обозначает номер вершины симплекса, а второй - ее координату: j - номер вершины с минимальным откликом. Для рассматриваемого случая координаты точки А 4 вычисляются так:

A 4 (F сж )=2/2 [ A 1 (F сж )+ A 3 (F сж )]– A 2 (F сж );

A 4 (I св max )=2/2 –A 2 (I св max ).

После проведения эксперимента в точке A 4 производится сравнительная оценка диаметра ядра для режимов A 1 , A 3 , A 4 . Точка симплекса с минимальным выходом отбрасывается и описанная процедура повторяется.

Рис. Траектория движения симплекса при определении оптимального режима сварки (d э =20мм, R з =75мм)

А - сплава Д16АМ; б – сплава АМг6; в – нержавеющей стали 1Х18Н9Т

Как видно из рисунка и табл. 1, после достижения симплексом точки А 8 поступательное движение прекратилось.

Таблица 1

№ опыта

Симплекс

Точка, в которой проводится опыт

Координаты вершин

d я , мм

I св max

F сж

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 3 A 4

A 3 A 4 A 5

A 4 A 5 A 6

A 5 A 6 A 7

A 6 A 7 A 8

A 6 A 8 A 9

A 8 A 9 A 10

A 10

A 8 A 10 A 11

A 11

A 8 A 11 A 12

A 12

Примечание. В опытах № 10, 11 произошел выплеск.

При сварке на режиме, определяемом точкой А 10 , диаметр ядра увеличился, но при этом произошел выплеск. Следующий симплекс был построен на стороне А 8 …А 10 , и эксперимент, проведенный в точке А 11 , также привел к выплеску. Завершающий опыт в вершине А 12 дал существенно меньшие размеры диаметра ядра по сравнению с режимом, определяемым точкой А 8 .

После завершения цикла вращения симплекса вокруг вершины А 8 оказалось, что режимы A 9 , A 10 , A 11 , A 12 дают меньший диаметр ядра либо приводят к выплескам.

Для уточнения координат оптимального режима в точке А 8 был проведен ряд опытов, которые дали хорошую воспроизводимость результатов. Таким образом, в качестве оптимального был определен режим, соответствующий вершине А 8 с координатами I св max =190, F сж =104.

Аналогичный эксперимент по выбору оптимального режима сварки был проведен также для материалов АМг6 и 1Х18Н9Т мм . Траектории движения симплексов для них приведены на рис. б и в. В табл. 2 указаны оптимальные режимы в натуральных единицах.

Таблица 2

Свариваемый материал

I св max , к А

F сж , кг

Д16АМ

31,2

АМг6

17,6

1Х18Н9Т

Литература

1. А.С. Гельман, Технология и оборудование контактной сварки, Машгиз, М., 1960.

2. К.А. Кочергин, Вопросы теории контактной сварки, Машгиз, М, - Л., 1950.

2. Г.Ф. Скакун, А.А. Чакалаев, К вопросу расчета некоторых параметров режима точечной сварки легких сплавов, сб. «Надежность сварных соединений и конструкций», «Машиностроение», М, 1967.

3. В.К . Лебедев, Ю.Д. Яворский, Применение критериев подобия для определения режимов сварки, «Автоматическая сварка», № 8, 1960.

4. В.В. Налимов, Н.А. Чернова, Статистические методы планирования экстремальных экспериментов, «Наука», М., 1965.

5. Б.Е. Патон и др., Автоматизация экспериментальных исследований сварочных процессов, «Автоматическая сварка», № 6, 1970.

6. П.В. Ермуратский, Симплексный метод оптимизации, «Труды МЭИ», вып. 67, 1966.