Экспертные методы в исследовании систем управления. Сущность экспертных методов На чем основываются экспертные методы

1. Краткая характеристика экспертных методов


Современная экономика предъявляет новые, более высокие требования к управлению. Вопросы совершенствования методов управления приобретают сейчас очень важное значение, поскольку именно в этой сфере имеются еще большие резервы роста эффективности народного хозяйства. Существенным фактором повышения научного уровня управления является применение при подготовке решений математических методов и моделей. Однако, полная математическая формализация технико-экономических задач часто неосуществима вследствие их качественной новизны и сложности.

В связи с этим все шире используются экспертные методы, под которыми понимают комплекс логических и математико-статистических методов и процедур, направленных на получение от специалистов информации, необходимой для подготовки и выбора рациональных решений. Экспертные методы применяют сейчас в ситуациях, когда выбор, обоснование и оценка последствий решений не могут быть выполнены на основе точных расчетов. Такие ситуации нередко возникают при разработке современных проблем управления общественным производством и, особенно, при прогнозировании и долгосрочном планировании.

Сущность экспертных методов, как при решении задач исследования систем управления, так и при использовании их в практике принятия решений в других областях науки, техники, управления, заключается в усреднении различными способами мнений (суждений) специалистов-экспертов по рассматриваемым вопросам.

Методы экспертных оценок - это методы организации работы со специалистами-экспертами и обработки мнений экспертов. Эти мнения обычно выражены частично в количественной, частично в качественной форме. Методы экспертных оценок используются для прогнозирования событий будущего, если отсутствуют статистические данные или их недостаточно. Они также применяются для количественного измерения таких событий, для которых не существует других способов измерения, например, при оценке важности целей и предпочтительности отдельных методов продвижения товара на рынок. Иными словами, методы экспертных оценок применяются как для количественного измерения событий в настоящем, так и для целей прогнозирования.

Под экспертными оценками понимают комплекс логических и математических процедур, направленных на получение от специалистов информации, ее анализ и обобщение с целью подготовки и выработки рациональных решений.

Функции экспертных оценок в системе управления:

прогноз тенденций развития тех или иных объектов управления и возможных сбоев в управляющих подсистемах, возникновения новых субъектов в формировании систем управления;

обоснование построения модели объекта прогнозирования. Методы экспертных оценок - одна из групп методов научно-технического прогнозирования, базирующаяся на предположении, что на основе мнений экспертов возможно построить адекватную модель объекта прогнозирования;

оценка степени достоверности данных, полученных в результате исследования, когда на процесс исследования естественным образом влияют субъективные факторы. Например, выводы по любому социально-экономическому исследованию могут быть сделаны на фактах, деформированных социальной концепцией исследователя;

оценка степени полноты и объективности информации, получаемой управляющей системой от объекта управления, а также обоснованности информации (решений), поступающей на вход в объект управления от управляющей системы;

оценка конкретных альтернативных путей развития или объекта управления, или управляющей системы, или обеих систем вместе;

аттестация конкретных элементов управляющей системы и объекта управления на предмет их соответствия функциям, для которых они созданы.

Наиболее распространенными экспертными методами при в настоящее время при принятии решений по управлению являются следующие:

метод рангов;

метод непосредственного оценивания;

метод сопоставлений.

Последний метод включает две его разновидности: парного сравнения и последовательного сопоставления.

В принципе каждый из них имеет много общего, а отличие, в основном, только в том, что оценивание (измерение) изучаемых объектов системного управления осуществляется различными способами. Причем каждый из методов обладает определенными достоинствами и недостатками.

Общность каждого из методов заключается в последовательности проведения процедур их использования. К ним следует отнести:

организацию экспертного оценивания;

проведение сбора мнений экспертов;

обработку результатов мнений экспертов.

По методу рангов эксперт осуществляет ранжирование (упорядочение) исследуемых объектов организационной системы в зависимости от их относительной значимости (предпочтительности). При этом обычно наиболее предпочтительному объекту присваивается ранг 1, а наименее предпочтительному - последний ранг, равный по абсолютной величине числу упорядочиваемых объектов. Более точным такое упорядочение становится при меньшем количестве объектов исследования и наоборот.

Таким образом, этот метод позволяет определить место исследуемого объекта среди других объектов системы управления. Достоинством метода рангов является его простота. Недостатками являются:

невозможность с достаточной точностью ранжировать количество объектов, количество которых превышает 15-20;

не отвечает на вопрос как далеко по значимости находятся исследуемые объекты друг от друга.

Данный метод применяется в практике исследования систем управления, несмотря на свою простоту, довольно редко.

Метод непосредственного оценивания представляет собой упорядочение исследуемых объектов (например, при отборе параметров для составления параметрической модели) в зависимости от их важности путем приписывания баллов каждому из них. При этом наиболее важному объекту приписывается (дается оценка) наибольшее количество баллов по принятой шкале. Диапазон шкалы оценок наиболее распространенным бывает от 0 до 1, 0 до 5, 0 до 10, 0 до 100. В простейшем случае оценка может быть 0 или 1. Иногда оценивание осуществляется в словесной форме. Например, «очень важный», «важный», «маловажный», и т.п., что тоже иногда для большого удобства обработки результатов опроса переводится в балльную шкалу (соответственно 3, 2, 1).

Использование указанного метода используется только при уверенности полной информированности экспертов об исследуемых свойствах объекта, чего нередко не бывает.

Метод сопоставления осуществляется парным сравнением и последовательным сопоставлением.

При парном сравнении эксперт сопоставляет исследуемые объекты по их важности попарно, устанавливая в каждой паре объектов наиболее важный. Все возможные пары объектов эксперт представляет в виде записи каждой из комбинаций (объект I - объект 2, объект 2 - объект 3 и т.д.) или в форме матрицы.

В результате сравнения объектов в каждой паре эксперт высказывает мнение о важности того или иного объекта, то есть отдает одному из них предпочтение. Иногда эксперты приходят к выводу об эквивалентности каждого из объектов пары. Упорядочение в каждой паре объектов, безусловно, не дает сразу упорядочения всех рассматриваемых объектов, поэтому необходима последующая обработка результатов сравнения. Наиболее удобно осуществлять парные сравнения и их обработку, используя в качестве инструмента матрицы.

В отдельных случаях при большом количестве исследуемых объектов на результаты парного сравнения оказывают влияние психологические факторы, то есть предпочтение порой получает не тот объект, который действительно предпочтителен перед другими, а тот, который в перечне пар записан первым или находится по расположению в матрице выше сравниваемого. Поэтому иногда для исключения психологического влияния проводят двойное парное сравнение, то есть еще раз осуществляют парное сравнение, но только при обратном расположении объектов и соответственно объектов в каждой паре.

Метод парных сравнений очень прост и он позволяет исследовать большее количество объектов (по сравнению, например, с методом рангов) и с большей точностью.

Сущность метода последовательного сопоставления состоит в следующем. Эксперт располагает все исследуемые объекты в порядке их важности (как метод рангов). Предварительно каждому из объектов приписывается определенное количество баллов, например, по шкале от 0 до I (как метод оценивания). Причем самому важному объекту дается балл равный I, а всем остальным в порядке уменьшения их значимости, то есть от I до 0. Далее эксперт решает вопрос, будет ли важность объекта, имеющего ранг I, больше суммы балльных оценок всех остальных объектов. Если будет, то величина балльной оценки первого объекта увеличивается до соблюдения этого условия, а если нет, то эксперт уменьшает эту величину до такого числового значения, чтобы она стала меньше суммы оценок всех остальных объектов.

Величины оценок второго, третьего и последующих объектов по важности определяются последовательно аналогично оценке первого наиболее важного объекта.

Метод последовательного сопоставления для экспертов наиболее трудоемок. Особенно это начинает ощущаться при количестве исследуемых объектов более шести-семи.

Общность экспертных методов заключается в последовательности проведения процедур их использования. К ним следует отнести организацию экспертного оценивания, проведение сбора мнений экспертов и обработку полученных результатов.

Для общего руководства экспертными работами назначается председатель экспертной комиссии. В ее составе организуют две группы - рабочую и экспертную.

В подчинении руководителя рабочей группы находятся технические работники, отвечающие за техническую сторону подготовки материалов к работе экспертов, обработку полученных результатов и т. п., а также специалисты по решаемым вопросам. Формирование экспертной группы осуществляет руководитель (организатор) рабочей группы. При этом выполняется ряд последовательных мероприятий:

постановку проблемы и определение области деятельности группы;

составление предварительного списка экспертов - специалистов в рассматриваемой области деятельности;

анализ качественного состава предварительного списка экспертов и уточнение списка;

получение согласия эксперта для участия в работе;

составление окончательного списка экспертной группы.

Число экспертов в группе зависит от множества факторов и условий, в частности от важности решаемой проблемы, имеющихся возможностей и т.п.

Подбор конкретных экспертов проводится на основе анализа качества каждого из предлагаемых экспертов. Используются для этой цели разнообразные способы:

оценка кандидатов в эксперты на основе статистического анализа результатов прошлой деятельности в качестве экспертов по проблемам оргпроектирования;

коллективная оценка кандидата в эксперты как специалиста в данной области;

самооценка кандидата в эксперты;

аналитическое определение компетентности кандидатов в эксперты.

Среди всех известных форм сбора мнений можно отметить индивидуальные, коллективные и смешанные. Каждая из этих форм имеет разновидности: анкетирование, интервьюирование, дискуссия, мозговой штурм, совещание, деловая игра. Во многих случаях управления качеством они используются совместно, что дает больший эффект и объективность.

Методы экспертных оценок можно разделить на две группы: методы коллективной работы экспертной группы и методы получения индивидуального мнения членов экспертной группы.

Методы коллективной работы экспертной группы предполагают получение общего мнения в ходе совместного обсуждения решаемой проблемы. Иногда эти методы называют методами прямого получения коллективного мнения. Основное преимущество этих методов заключается в возможности разностороннего анализа проблем. Недостатками методов является сложность процедуры получения информации, сложность формирования группового мнения по индивидуальным суждениям экспертов, возможность давления авторитетов в группе.

Методы коллективной работы включают методы «мозговой атаки», «сценариев», «деловых игр», «совещаний» и «суда».

Метод «мозговой атаки». Методы этого типа известны также под названием коллективной генерации идей, мозгового штурма, дискуссионных методов. Все эти методы основаны на свободном выдвижении идей, направленных на решение проблемы. Затем из этих идей отбираются наиболее ценные.

Достоинством метода «мозговой атаки» является высокая оперативность получения требуемого решения. Основным недостатком его - сложность организации экспертизы, так как иногда невозможно собрать вместе требуемых специалистов, создать непринужденную атмосферу и исключить влияние должностных взаимоотношений.

Метод «сценариев» представляет собой совокупность правил по изложению в письменном виде предложений специалистов по решаемой проблеме. Сценарий представляет собой документ, содержащий анализ проблемы и предложения по ее реализации. Предложения вначале пишут эксперты индивидуально, а затем они согласуются и излагаются в форме единого документа.

Основным преимуществом сценария является комплексный охват решаемой проблемы в доступной для восприятия форме. К недостаткам можно отнести возможные неоднозначность, нечеткость излагаемых вопросов и недостаточную обоснованности отдельных решения.

«Деловые игры» основаны на моделировании функционирования социальной системы управления при выполнении операций, направленных на достижение поставленной цели. В отличие от предыдущих методов деловые игры предполагают активную деятельность экспертной группы, за каждым членом которой закреплена определенная обязанность в соответствии с заранее составленными правилами и программой.

Основным достоинством деловых игр является возможность выработки решения в динамике с учетом всех этапов исследуемого процесса при взаимодействии всех элементов общественной системы управления. Недостаток заключается в сложности организации деловой игры в условиях, приближенных к реальной проблемной ситуации.

Метод «совещаний» («комиссий», «круглого стола») - самый простой и традиционный. Он предполагает проведение совещания или дискуссии с целью выработки единого коллективного мнения по решаемой проблеме. В отличие от метода «мозговой атаки» каждый эксперт может не только высказывать свое мнение, но и критиковать предложения других. В результате такого тщательного обсуждения уменьшается возможность ошибок при выработке решения.

Достоинством метода является простота его реализации. Однако на совещании может быть принято ошибочное мнение одного из участников в силу его авторитета, служебного положения, настойчивости или ораторских способностей.

Метод «суда» является разновидностью метода «совещаний» и реализуется по аналогии с ведением судебного процесса. Метод «суда» целесообразно использовать при наличии нескольких групп экспертов, придерживающихся различных вариантов решения.

Методы получения индивидуального мнения членов экспертной группы основаны на предварительном получении информации от экспертов, опрашиваемых независимо друг от друга, с последующей обработкой полученных данных. К этим методам можно отнести методы анкетного опроса, интервью и методы «Дельфи».

Основные преимущества метода индивидуального экспертного оценивания состоят в их оперативности, возможности в полной мере использовать индивидуальные способности эксперта, отсутствии давления со стороны авторитетов и в низких затратах на экспертизу. Главным их недостатком является высокая степень субъективности получаемых оценок из-за ограниченности знаний одного эксперта.

Метод «Дельфи» представляет собой итеративную процедуру анкетного опроса. При этом соблюдается требование отсутствия личных контактов между экспертами и обеспечения их полной информацией по всем результатам оценок после каждого тура опроса с сохранением анонимности оценок, аргументации и критики.

Процедура метода включает несколько последовательных этапов опроса.

На первом этапе производится индивидуальный опрос экспертов, обычно в форме анкет. Эксперты дают ответы, не аргументируя их. Затем результаты опроса обрабатываются, и формируется коллективное мнение группы экспертов, выявляются и обобщаются аргументации в пользу различных суждений.

На втором - вся информация сообщается экспертам, и их просят пересмотреть оценки и объяснить причины своего несогласия с коллективным суждением. Новые оценки вновь обрабатываются, и осуществляется переход к следующему этапу. Практика показывает, что после трех-четырех этапов ответы экспертов стабилизируются, и необходимо прекращать процедуру.

Достоинством метода «Дельфи» является использование обратной связи в ходе опроса, что значительно повышает объективность экспертных оценок. Однако данный метод требует значительного времени на реализацию всей многоэтапной процедуры.

Таким образом, можно сделать вывод, что экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков. Несмотря на успехи, достигнутые в последние годы в разработке и практическом использовании метода экспертных оценок, имеется ряд проблем и задач, требующих дальнейших методологических исследований и практической проверки. Необходимо совершенствовать систему отбора экспертов, повышение надежности характеристик группового мнения, разработку методов проверки обоснованности оценок, исследование скрытых причин, снижающих достоверность экспертных оценок. Однако, уже и сегодня экспертные оценки в сочетании с другими математико-статистическими методами являются важным инструментом совершенствования управления на всех уровнях.

экспертный оценка метод управление

2. Обработка данных, полученных экспертным методом


После проведения опроса группы экспертов осуществляется обработка результатов. Исходной информацией для обработки являются числовые данные, выражающие предпочтения экспертов, и содержательное обоснование этих предпочтений. Целью обработки является получение обобщенных данных и новой информации, содержащейся в скрытой форме в экспертных оценках. На основе результатов обработки формируется решение проблемы.

Обработка собранных мнений (данных) экспертов проводится как количественно (численные данные), так и качественно (содержательная информация). При обработке используются различные способы. При наличии численных данных для решения вопросов, обеспеченных достаточным информационным материалом, применяются методы усреднения экспертных суждений. Однако даже при имеющихся численных данных, но при недостаточности информации по решаемому вопросу, наряду с количественными методами обработки экспертных данных, используются методы качественного анализа и синтеза.

Наличие, как числовых данных, так и содержательных высказываний экспертов приводит к необходимости применения качественных и количественных методов обработки результатов группового экспертного оценивания. Удельный вес этих методов существенно зависит от класса проблем, решаемых экспертным оцениванием.

Все множество проблем можно разделить на два класса. К первому классу относятся проблемы, для решения которых имеется достаточный уровень знаний и опыта, т. е. имеется необходимый информационный потенциал. При решении проблем, относящихся к этому классу, эксперты рассматриваются как хорошие в среднем измерители. Под термином «хорошие в среднем» понимается возможность получения результатов измерения, близких к истинным. Для множества экспертов их суждения группируются вблизи истинного значения. Отсюда следует, что для обработки результатов группового экспертного оценивания проблем первого класса можно успешно применять методы математической статистики, основанные на осреднении данных.

При применении рассмотренных экспертных методов (рангов и др.) мнения экспертов часто не совпадают, поэтому необходимо количественно оценить меру согласованности мнений экспертов и определить причины несовпадения суждений. Мера согласованности, естественно, устанавливается па основе статистических данных всей группы экспертов. Для оценки данной меры используются коэффициенты конкордации, которые рассчитываются по формуле



где С - сумма квадратов отклонений сумм рангов по каждому объекту от средней суммы рангов по всем объектам и экспертам, т. е.


где - средняя сумма рангов;


Аij - оценка (в баллах), данная i-му объекту j-м экспертом.

К-эксперты, Н-объекты.

Коэффициент конкордации может быть в диапазоне 1>W>0. При W=0 согласованность мнений экспертов отсутствует, а при W=1полная. Обычно считается, что согласованность вполне достаточна при W>0,5.

Рассчитанную величину коэффициента конкордации следует взвешивать по критерию Пирсона Х^2 с определенным уровнем значимости B -Максимальной вероятностью неправильного результата работы экспертов. Обычно значимость достаточно задавать в пределах 0,005 -0,05

В случае получения расчетной величины Х^2расч больше табличной(с избранным уровнем значимости) мнения экспертов окончательно признаются согласованными.

В случае определения несогласованности линий экспертов по коэффициентам конкордации и при соответствующей проверке его величины по критерию Пирсона экспертные опросы следует повторить.

Ко второму классу относятся проблемы, для решения которых еще не накоплен достаточный информационный потенциал. В связи с этим суждения экспертов могут очень сильно различаться друг от друга. Более того, суждение одного эксперта, сильно отличающееся от остальных мнений, может оказаться истинным. Очевидно, что применение методов осреднения результатов групповой экспертной оценки при решении проблем второго класса может привести к большим ошибкам. Поэтому обработка результатов опроса экспертов в этом случае должна базироваться на методах, не использующих принципы осреднения, а на методах качественного анализа.

Учитывая, что проблемы первого класса являются наиболее распространенными в практике экспертного оценивания, основное внимание уделяется методам обработки результатов экспертизы для этого класса проблем.

В зависимости от целей экспертного оценивания и выбранного метода измерения при обработке результатов опроса возникают следующие основные задачи:

) построение обобщенной оценки объектов на основе индивидуальных оценок экспертов;

) построение обобщенной оценки на основе парного сравнения объектов каждым экспертом;

) определение относительных весов объектов;

) определение согласованности мнений экспертов;

) определение зависимостей между ранжировками;

) оценка надежности результатов обработки.

Задача построения обобщенной оценки объектов по индивидуальным оценкам экспертов возникает при групповом экспертном оценивании. Решение этой задачи зависит от использованного экспертами метода измерения.

При решении многих задач недостаточно осуществить упорядочение объектов по одному показателю или некоторой совокупности показателей. Желательно иметь численные значения для каждого объекта, определяющие относительную его важность по сравнению с другими объектами. Иными словами, для многих задач необходимо иметь оценки объектов, которые не только осуществляют их упорядочение, но и позволяют определять степень предпочтительности одного объекта перед другим. Для решения этой задачи можно непосредственно применить метод непосредственной оценки. Однако эту же задачу при определенных условиях можно решить путем обработки оценок экспертов.

Определение согласованности мнений экспертов производится путем вычисления числовой меры, характеризующей степень близости индивидуальных мнений. Анализ значения меры согласованности способствует выработке правильного суждения об общем уровне знаний по решаемой проблеме и выявлению группировок мнений экспертов. Качественный анализ причин группировки мнений позволяет установить существование различных взглядов, концепций, выявить научные школы, определить характер профессиональной деятельности и т. п. Все эти факторы дают возможность более глубоко осмыслить результаты опроса экспертов.

Обработкой результатов экспертного оценивания можно определять зависимости между ранжировками различных экспертов и тем самым устанавливать единство и различие в мнениях экспертов. Важную роль играет также установление зависимости между ранжировками, которые строятся по различным показателям сравнения объектов. Выявление таких зависимостей позволяет вскрыть связанные показатели сравнения и, может быть, осуществить их группировку по степени связи. Важность задачи определения зависимостей для практики очевидна. Например, если показателями сравнения являются различные цели, а объектами - средства достижения целей, то установление взаимосвязи между ранжировками, упорядочивающими средства с точки зрения достижения целей, позволяет обоснованно ответить на вопрос, в какой степени достижение одной цели при данных средствах способствует достижению других целей.

Оценки, получаемые на основе обработки, представляют собой случайные объекты, поэтому одной из важных задач процедуры обработки является определение их надежности. Решению этой задачи должно уделяться соответствующее внимание.

Таким образом, обработка результатов экспертизы представляет собой трудоемкий процесс. Выполнение операций вычисления оценок и показателей их надежности вручную связано с большими трудовыми затратами даже в случае решения простых задач упорядочения. В связи с этим целесообразно использовать вычислительную технику и особенно ЭВМ. Применение ЭВМ выдвигает проблему разработки машинных программ, реализующих алгоритмы обработки результатов экспертного оценивания.


Список используемой литературы


1. Василевская И.В. Управление качеством: Учебное пособие / И.В. Василевская. - М.: ИЦ РИОР, 2011. - 112 c.

Виханский О.С., Наумов А.И. Менеджмент: Учебник. - 3-е изд. - М.: Экономистъ, 2004. - 528с.: ил.

Экспертные методы - методы оценки, проводимые группой экспертов в условиях неопределенности или риска.

Экспертные методы используются для определения номенклатуры показателей качества, коэффициентов их весомости, для измерения показателей качества и их оценки органолептическим методом. Оценка показателей качества измерительным, регистрационным, расчетным методами применяется для определения комплексных показателей качества различных уровней иерархии.

Предназначены для экспертной оценки товаров в случаях, когда другие, ранее перечисленные методы неприменимы или неэкономичны.

Экспертные методы основаны на принятии эвристических решений, базой для которых являются знания и опыт, накопленные экспертами в конкретной области в прошлом.

Экспертным методам присущи определенные достоинства и недостатки.

Преимуществами является то, что они позволяют принимать решения, когда объективные методы невосприимчивы. К другим преимуществам относится их восстанавливаемость. Сфера применения этих методов - не только оценка качества товаров, но и исследование операций технологического цикла, принятие решений, управляющие, прогнозирования.

Экспертные методы, применяемые квалифицированными экспертами, позволяют дать точную оценку товаров. Проведенные эксперименты свидетельствуют, что при правильной методике экспертной оценки погрешность результатов составляет 5-10%, что допускается для измерительных методов. Полученные экспериментальным путем результаты экспертных оценок в различных группах экспертов показали их достаточно высокую восстанавливаемость.

К недостаткам экспертных методов относятся субъективизм, ограниченность применения, высокие затраты на их проведения.

Субъективизм экспертных методов является следствием того, что экспертная оценка проводится каждым экспертом индивидуально и представляет, по мнению Е. П. Райхмана ы Г. Г. Азгальдова "не что иное, как его психологическую реакцию на физические и химические характеристики продукции". Однако следует иметь в виду, что экспертная оценка складывается из мнений нескольких экспертов, каждый из которых является не только специалистом в определенной отрасли знаний, но и потребителем. Поэтому экспертная оценка в определенной мере отражает и мнения потребителей, что невозможно осуществить при других методах.

Вследствие значительной доли субъективизма экспертные методы имеют определенные ограничения. их использование рационально в двух случаях: во-первых, когда поставленные перед экспертами цели не могут быть решены другими методами; во-вторых, когда имеющиеся альтернативные методы дают менее точные и достоверные результаты или связаны с большими затратами.

Для устранения этого недостатка экспертные методы при проведении товарной экспертизы сочетаются с другими методами. Чаще всего вместе применяются экспертный и органолептический методы. Более того, при разработке шкал органолептической балловой оценки, выборе номенклатуры показателей качества, определении коэффициентов весомости экспертные методы незаменимы.

Экспертные методы подразделяются на три подгруппы: 1) методы группового опроса экспертов; 2) математико-статистические методы обработки экспертных оценок 3) методы экспертной оценки показателей качества.

Каждая группа экспертных методов в свою очередь подразделяется на виды и разновидности. Классификация экспертных методов представлена на рис. 1.3.

Рис. 1.3. в

Методы группового опроса экспертов - методы, основанные на проведении опроса группы экспертов с последующим анализом и обработкой полученной от них информации.

Целью этих методов является получение групповой экспертной оценки для принятия окончательных решений.

Основанием для выбора является необходимость принятия сложных решений в ситуации неопределенности или составление научно обоснованного прогноза, требующего участия группы независимых и компетентных специалистов в узкой области или многих областях знаний (например, знаний однородной группы товаров или всех продовольственных товаров).

Основные преимущества групповой экспертной оценки заключаются в возможности разностороннего анализа количественных и качественных аспектов проблем определения и/или прогнозирования отдельных характеристик товаров или их совокупности. Взаимодействие между экспертами позволяет значительно увеличить объем суммарной информации, которой владеет группа экспертов, в сравнении с информацией любого члена группы. К тому же количество факторов, учтенных при групповой оценке и влияющих на результативность принимаемого решения, больше, чем сумма факторов, учтенных одним экспертом. При групповой оценке меньше ошибка принятия основных решений и показателей, не имеющих существенного значения для решения проблемы. Поэтому важным преимуществом групповой оценки является возможность получения обобщенного результата.

К недостаткам групповых оценок относятся: трудности в получении надежной и согласованной оценки; получение неодинаковых ответов на один и тот же вопрос с большой разницей мнений из-за разной компетентности экспертов; получение однозначных ответов не гарантирует их обоснованности и достоверности, причем при проведении экспертизы это невозможно проверить; большее количество неверной информации у группы экспертов, чем у отдельного эксперта, может привести к значительным ошибкам в конечных результатах; возможность конфронтации, когда отдельные эксперты за неуверенности или иных причин могут соглашаться с мнением большинства.

Несмотря на указанные недостатки, экспериментально установлено, что при соблюдении определенных требований групповая оценка более надежна, чем индивидуальная. К таким требованиям относятся: приемлемое распределение оценок; групповая надежность; подготовка экспертизы.

Эффективность экспертизы зависит от точности и надежности полученных результатов, то есть от применяемых методов и от квалификации эксперта. Выбор эксперта является сложной задачей, чаще всего учитывают несколько личных свойств: компетентность - профессиональное и кваліметричну, заинтересованность эксперта в результатах экспертизы, отношение к делу, объективность. Почти не учитываются такие черты, как склонность к риску, другие психологические особенности.

Не разработан до сих системный подход к оценке качества эксперта; существующие методы оценки делятся на пять групп:

Эвристические;

Статистические - оценки, которые получают в результате анализа оценок экспертов с определением отклонений от средних значений;

Тестовые - оценки, полученные в результате выполнения тестовых заданий экспертами;

Документальные - оценки компетентности, полученные при анализе отдельных документальных данных экспертиз, проведенных экспертом;

Комбинированные - оценки, полученные во время анализа данных, полученных при сочетании перечисленных методов.

Эвристические оценки включают самооценку и оценку, сделанную коллективом экспертов. Самооценка чаще всего субъективная; для уменьшения субъективности применяют балльную шкалу по отдельным свойствам эксперта. Самооценку проводят соответственно по видам товаров и показателям качества, например, эстетичность изделий, эксперт оценивает себя анкетированием. Анкета включает периодичность ознакомления с современной отечественной и зарубежной литературой, с современными образцами продукции, с результатами социологических опросов.

Как разновидность самооценки применяют метод оценки по аргументированностью и ознакомления с продукцией, которая анализируется. Оценка проводится с помощью анкеты с определением коэффициента компетентности.

С помощью тестовых оценок возможно оценить такие важные свойства эксперта, как кваліметричну и профессиональную компетентность, объективность. Квалиметрична компетентность при проведении органолептической оценки заключается в многократном опросе экспертов для определения коэффициентов весомости несколько раз и определение достоверности оценок.

Профессиональная компетентность проверяется в виде контроля умение пользоваться различными типами оценочных шкал - порядка, отношений, интервалов, а также умения различать значительное количество характеристик, градаций при оценке свойств продукта, который анализируется.

При участии экспертов в коллективной оценке и обсуждении наблюдается явление конформизма, то есть попадание эксперта под влияние выводов других экспертов, что негативно влияет на формирование объективной оценки эксперта. Поэтому умение придерживаться своего мнения и отстаивать свои выводы имеет положительное значение во время проведения экспертизы коллективным методом и формирования объективной оценки.

Экспертные методы оценки качества основываются на использовании выводов экспертов. Они применяются при невозможности или нецелесообразности, неекономічності использования измерительных или расчетных методов. Это происходит при нехватке информации, необходимости применения и разработке специальных технических средств, при оценке эстетических показателей качества и тому подобное. Экспертные методы могут сочетаться с другими методами или применяться как самостоятельный вид во время оценки качества нормативной документации на продукцию и продукции, определении номенклатуры показателей и коэффициентов их весомости, при выборе базовых образцов и показателей качества, во время определения и измерения показателей качества органолептическим методом, во время оценки единичных и комплексных показателей качества, определенных измерительным или расчетным методом.

Основой экспертной оценки качества является объективная общественная полезность продукции, которая отражает ее современность. Мнение о качестве продукции, которую выражает квалифицированный эксперт, отвечает общественным потребностям и совпадает с мнением массового потребителя.

Однако в выборе товара потребитель придерживается консервативной позиции и новую продукцию принимает осторожно, а иногда и вовсе не воспринимает. В заключении экспертов о качестве товара обобщается совокупность мнений потребителей продукции. Исследования показали, что зафиксированы оценки качества товара экспертов совпадают с оценками качества продукции, которые получили во время массового опроса потребителей. Определение точности экспертных исследований за соблюдение методологии проведения экспертизы показало, что она составляет 5-10%.

в Отношении качества продукции, ее потребительских свойств экспертные методы используют в таких случаях:

Определение номенклатуры показателей во время проведения экспертизы;

Выбор критериев оценки продукта или товара и размещения показателей по принципу иерархии;

Определение коэффициентов весомости показателей качества для определения уровня качества продукта, товара;

Исследование показателей органолептическим методом с применением методов их количественного выражения;

Оценка показателей качества измерительным, регистрационным, расчетным методами для определения комплексных показателей качества различных уровней иерархии.

Чаще всего применяются следующие экспертные методы:

Ведущего эксперта (единичного);

Комиссий;

комбинированный.

Метод ведущего эксперта дает возможность быстро провести экспертизу, сократить время на процедуру согласования и обсуждения, статистическую обработку данных членами группы. Однако результаты экспертизы, проводимой одним экспертом, зависят от уровня его профессиональных знаний, личности, уровня компетентности.

Метод экспертных комиссий предполагает участие группы специалистов, которые проводят анализ и оценку. Такой метод позволяет получить достоверные, объективные результаты, но требует значительных затрат времени на подготовку и организацию экспертизы. Количество экспертов, которые формируют комиссию, зависит от требуемой точности и надежности результатов экспертизы. Экспертная комиссия состоит из двух групп - рабочей и экспертной. Рабочая группа осуществляет подготовку, организацию и проведение экспертной оценки качества продукции, последующий анализ ее результатов. В состав рабочей группы входят организатор, консультант, который владеет профессиональными знаниями о продукции, оценивают технические работники. Экспертная группа может состоять из нескольких подгрупп, каждая из которых специализируется на решении соответствующих задач - определении номенклатуры показателей, оценке отдельных групп показателей и тому подобное.

Комбинированный метод, который основывается на последовательном использовании работы ведущего эксперта и небольшой по количеству экспертной комиссии, применяется в некоторых случаях.

в Общей классификации экспертных методов нет. Однако применяют классификацию в зависимости от соотношения количества данных, полученных экспертным или аналитическим методом, способа получения информации от эксперта и некоторых других факторов.

в Зависимости от способа получения от эксперта информации различают методы:

Коллективный;

Индивидуальный.

При коллективном способе технический работник проводит опрос сразу всей группы экспертов, при индивидуальном - каждого эксперта отдельно. Для получения достоверных результатов необходимо четко и правильно поставить цель и задачи эксперту, при групповом методе это трудно, однако возможно при постоянно сформированном составе группы. При индивидуальном способе применяют интервью, интервью-анкеты, анкетирование, смешанное анкетирование. Опросы могут проводить очным и заочным способом. При очном способе эксперт излагает свои суждения лицу, проводящему опрос. При заочном опросе контакт между ними отсутствует и эксперт заполняет сам анкету или карточку опроса.

Во время проведения интервью технический работник делает отметку в форме беседы, которая проходит по программе и определенному перечню вопросов. Во время проведения интервью-анкеты перечень вопросов носит более конкретный, направленный характер, последовательность вопросов жестко определена. Анкета заполняется в присутствии эксперта.

Анкетирование отличается тем, что эксперт самостоятельно заполняет анкету, имея пояснительную записку по заполнению. Смешанное анкетирование предполагает предварительное объяснение эксперта по заполнению анкеты с уточнением задачи.

По информативности наибольшие возможности имеют методы интервью, интервью - анкеты, анкетирование. Самая большая независимость суждений характерна для метода анкетирования.

Для решения сложных ситуаций неопределенности или во время формирования научно - технического прогноза экспертиза требует участия группы эрудированных специалистов, хорошо осведомленных во многих областях знаний. Основное преимущество коллективной оценки заключается в возможности разностороннего анализа количественных и качественных аспектов проблем. Существуют проблемы, решить которые невозможно без участия специалистов. Предполагается, что мнение группы экспертов надежнее, чем мнение отдельного индивидуума, т. е. две группы одинаково компетентных экспертов с большей вероятностью найдут объективное решение.

Комбинирование операций по подготовке и проведению опросов экспертов, а также технических операций позволило создать несколько экспертных методов, получивших наибольшее признание и распространение. К ним относятся методы Дельфи, ПАТТЕРН и комбинированный.

Метод Дельфи (в некоторых источниках - Дельфи) - метод опроса экспертов, основанный на последовательно осуществляемых процедурах, которые направлены на формирование группового мнения по процедурам с недостаточной информацией.

Метод Дельфи был разработан в американской исследовательской компании РЭНД Корпорейшн В.Хелмером, Н.Долки и Т. Гордоном. Он использовался для военного научно-технического прогнозирования будущего. Срок Дельфы происходит от названия городка в Греции, где жили оракулы при храме бога Аполлона.

Особенностями метода Дельфи является: отказ от совместной работы экспертов; анонимность оценок; регулируемый обратной связи; групповая ответ.

Отказ от совместной работы экспертов и анонимность достигаются тем, что каждый эксперт высказывает свое мнение в анкете, без группового обсуждения. Применяются и другие технические приемы индивидуального опроса, например, ответы на вопросы вводятся экспертами в ЭВМ. Это позволяет уменьшить расхождение индивидуальных оценок и получить групповой ответ, что правильно отражает мнение каждого эксперта.

Анонимность опроса позволяет уменьшить конформний авторитарный влияние отдельных доминирующих экспертов, регулируемый обратная связь уменьшает влияние индивидуальных и групповых интересов. Введение обратной связи также повышает критерий объективности и надежности оценок.

При использовании этого метода для целей экспертной оценки качества потребительских товаров оказываются следующие его недостатки: сложность опрос экспертов и заполнение анкет, трудоемкость оценки в связи с большим количеством показателей качества (иногда до 20-40) и заполнением нескольких анкет (3-10), громоздкость записей объяснений из-за отсутствия прямого контакта организатора с экспертами.

Метод перспективен для получения групповой экспертной оценки и углубленного анализа событий в ситуациях неопределенности.

Метод ПАТТЕРН - метод опроса экспертов, основанный на построении иерархической структуры - дерева целей - и вынесении постановления этих целей после открытого обсуждения.

Название метода состоит из первых букв английских слов, означающих "Помощь планированию путем количественной оценки технических данных".

Метод разработан в американской фирме "Хонкуелл" для оценки проектов новых систем вооружения. Метод имеет аналоги: ПРОФАЙЛ, во Франции - метод КПЭ, ПРОПЛЕН тому подобное.

Метод ПАТТЕРН предусматривает несколько этапов.

I этап - постановка основной проблемы, требующей решения, и разделение ее на ряд вторичных проблем первого, второго и т. д. порядка, которые затем делятся на более узкие задачи. Деление продолжается до тех пор, пока не будут получены простые элементы, которые могут быть оценены экспертами.

В результате такого деления получается иерархическая структура связанных друг с другом основных, вторичных проблем и задач, называемых деревом целей.

II этап - определение с помощью экспертов коэффициентов весомости (или значимости) каждого задания в отношении основной цели, при этом эксперты выносят решение после открытого обсуждения в экспертной группе.

Такое открытое обсуждение наряду с положительным фактором - взаимодействие экспертов, которые стремятся к принятию положительного решения, - имеет и негативные последствия из-за конформизма, т. е. искажения действительного мнения экспертов за счет внушения или приспособления к мнению большинства.

III этап - применение ЭВМ для обработки полученных данных и их анализа. Преимуществами метода ПАТТЕРН является упрощение процедуры экспертного опроса. Недостатки: отсутствие обоснований оптимального числа членов экспертной группы, а также методики отбора в экспертную группу компетентных специалистов; обработка результатов опроса без учета различий как отдельные эксперты; отсутствие барьеров для проявления конформизма экспертов; недостаточная разработка и неопределенность принципов построения дерева целей.

Поскольку методы Дельфи и ПАТТЕРН имеют существенные недостатки и не соответствуют полностью целям экспертной оценки, Ое. Л. Райхман и Г. Г. Азгальдов предложили комбинированный метод, в котором были использованы положительные особенности других экспертных методов и исключены их недостатки.

Комбинированный метод - метод, основанный на сочетании индивидуальных и коллективных экспертных оценок.

Преимуществами комбинированного метода, является достаточная гибкость, которая позволяет исключить ошибки при опросе экспертов и повысить достоверность результатов экспертизы, четкое определение стратегии путем классификации задач по степени значимости и операций по их выполнению, высокая воспроизводимость результатов.

К недостаткам метода относится багатоопераційність, которая требует значительных затрат времени и средств. Однако этот недостаток окупается повышенной достоверностью и восстановлению результатов.

Для оценки качества товаров комбинированный метод имеет общий алгоритм экспертных операций:

1. Этап подготовительный:

Формирование рабочей группы;

Формирование экспертной группы;

Классификация продукции и потребителей;

Построение структурной схемы показателей качества.

2. Этап получения индивидуальных экспертных оценок:

Выбор процедуры назначения оценок экспертами;

Выбор метода получения информации от эксперта и подготовка документов, необходимых для опроса;

Опрос экспертов.

3. Этап получения коллективных экспертных оценок:

Обобщения индивидуальных экспертных оценок;

Определение согласованности индивидуальных экспертных оценок;

Определение объективности коллективных экспертных оценок.

Для каждого этапа есть соответствующие задачи. В период подготовительного этапа решаются такие задачи, как определение функций и структуры рабочей группы, ее количественного состава, обязанностей отдельных членов. Определяются и разрабатываются принципы формирования экспертной группы: относительно количества экспертов, их профессиональной подготовки и тому подобное.

На втором этапе происходит определение техники опроса экспертов, оцениваются наличие контакта между экспертами, метод передачи информации и форма экспертных оценок. Эксперты могут определять оценки самостоятельно или после обсуждения с другими экспертами или ознакомления с анонимными экспертами. Оценки обосновываются, определяются в количественной форме и дихотомічній, где ответы даются в форме "да", "нет" или 0-1.

Рациональное использование информации, получаемой от экспертов, возможно при условии преобразования ее в форму, удобную для анализа, подготовки и принятия решений. Возможности преобразования информации в соответствующие формы зависят от специфических особенностей объекта, полноты данных о нем, надежности, уровня принятия решения, а также от принятого критерия, зависит от исследуемой проблемы.

Одним из элементов, общим для многих экспертных методов, является коэффициенте весомости.

Коэффициент весомости - количественная характеристика степени значимости конкретного показателя для оценки качества.

Определение коэффициентов весомости показателей качества производится экспертным методом. Коэффициенты весомости предназначены для повышения достоверности экспертной оценки качества товаров.

Каждый показатель занимает в номенклатуре показателей качества по значимости определенное место. Эксперты ранжирования показателей по степени значимости осуществляют на основании профессиональных знаний и умений. Кроме того, любой квалифицированный эксперт стремится оценить показатели качества обследованного товара с позиций массового потребителя.

Если эксперт имеет возможность сравнить и оценить возможные варианты действий, предоставляя каждому из них определенное число, то он обладает определенной системе или шкале предпочтений. Правильное применение шкал имеет важное значение для обеспечения точности экспертных оценок. Различают следующие типы шкал: номинальная, порядковая, интервальная, отношений. Но наибольшие преимущества перед другими имеет шкала порядка благодаря относительной простоте экспертной оценки показателей качества по степени значимости. Характеристики шкал приведены в табл. 1.1.

Шкала номинальных наименований используется для того, чтобы отличить один объект от другого. Объекты должны быть пронумерованы, однако цифрами обозначается объект, а не его количественная характеристика. Это более простой тип измерения, в котором числа или символы используются только для классификации объектов. Шкала может быть использована для цифрового кодирования отдельных свойств в анкетах, для определения коэффициентов весомости.

Шкала порядковая (рангов) - такой метод оценивания, при котором параметры, показатели или объекты, которые оцениваются, располагаются в порядке роста или снижения показателя параметра (показателя) или свойств объекта. Классическим примером оценивания с использованием порядковой шкалы является оценка твердости минералов по шкале Мопса (шкала относительной твердости состоит из 10 эталонов твердости, причем твердость талька принята за 1, алмаза - 10). Этот способ может использоваться при определении интенсивности цвета муки, аромата фруктовых соков, букета вин, консистенции сыров. Порядковая шкала имеет преимущества при ее применении для определения коэффициентов весомости, поскольку упрощается процесс упорядочивания показателей качества по значимости для потребителей.

Таблица 1.1. Типы шкал и их характеристика

Тип шкалы

Определение шкалы

Отношения, задаваемые на шкале

Номинальная

Простой тип измерения, в котором числа или символы используются только для классификации объектов.

Эквивалентность (=)

Порядковая (ранги)

Объекты одного класса находятся в соответствующем отношении 3 объектами другого класса (больше чем, больше преимуществ, сильнее и тому подобное). Если [А]>[В] для некоторых объектов классов А и В, то имеет место частично упорядоченная шкала.

Эквивалентность (=). Больше чем (>).

Интервальная

Порядковая шкала, которая разделена на известные расстояния между двумя любыми числами на шкале, нулевая точка шкалы и единица измерения выбираются произвольно.

Эквивалентность (=) Больше чем (>). Отношение любых двух интервалов известно.

Отношений

Интервальная шкала с применением истинной нулевой точки, отношение любых двух точек не зависит от единицы измерения.

Эквивалентность (=). Больше чем (>). Определено отношение любых двух интервалов. Определено отношение между любыми двумя точками.

При определении коэффициентов весомости показателей качества эксперты сначала оценивают наиболее важный из этих показателей (по их мнению) и присваивают ему определенное число, например 1. Все дальнейшие показатели оценивают в убиваючому или возрастающем порядке по степени значимости.

После этого данные всех экспертов усредняются по каждому показателю.

В практике оценки качества товаров часто используется метод определения коэффициентов весомости, названный "методом фиксированной суммы". Суть его заключается в том, что эксперты назначают коэффициент весомости показателей, входящих в показатель верхнего уровня, причем сумма этих коэффициентов должна быть равна заранее определенному числу.

"Метод фиксированной суммы" целесообразно применят только при небольшом количестве показателей.

Практический опыт показывает, что при экспертной оценке качества товаров целесообразно применять следующие процедуру определения коэффициентов весомости.

1. Предварительное ранжирования экспертами показателей однородной группы. Ранг 1 присваивается самому важному показателю, 2 - следующему по важности и так далее Если показатели равнозначны по значимости, то им присваиваются одинаковые ранги. Количество показателей в однородной группе должно быть 4 и более. При меньшем количестве ранжирование не проводится.

2. Определение экспертами коэффициентов весомости показателей. Показателю 1-го ранга присваивается коэффициент весомости 10. Коэффициент весомости следующего по важности показателя определяется как доля важности первого показателя. При определении третьего и последующих показателей учитывается их важность в сравнении с предыдущими. В результате этих последовательных действий эксперт определяет коэффициенты весомости единичных, а затем комплексных показателей качества.

3. Ознакомление экспертов с значениями коэффициентов весомости (их обоснованиями), назначенными другими экспертами.

Обоснование коэффициентов весомости - очень трудоемкая операция, поэтому применяется при ограниченном числе показателей (около 10- 15). Иначе экспертам предлагается дать обоснование только по некоторым показателям на их усмотрение.

4. Усреднение значений коэффициентов весомости, определенных всеми экспертами. Проводят технические работники путем расчета среднеарифметической или средневзвешенной В последнем случае учитывается комплексная оценка качества эксперта.

Недостатками шкалы является неточность ранговых оценок за отсутствия уравнения интервалов, невозможность расчетов даже средней арифметической величины.

Шкала интервалов. Это такой метод оценивания, при котором существенной характеристикой является разность между значениями оцениваемых параметров, которая может быть выражена числом единиц, предусмотренных этой шкале. С помощью такой шкалы проводят ранжирование объектов, а также в определенных единицах устанавливают, на сколько один объект больше другого. Примером шкалы интервалов является шкала Цельсия, которая разбита на 100 равных интервалов и применяется для характеристики таких свойств продукции, которые связаны с температурными режимами, например, морозостойкость синтетической кожи, минимальная температура морозильной камеры в холодильнике.

Шкала отношений позволяет достичь высочайшего уровня измерения. Это такой метод оценивания, при котором используется единица измерения, она применяется для большинства параметров, которые представляют собой физические величины: размер, вес, плотность, силу, напряжение, частоту и тому подобное. Результаты измерения по шкале имеют свойства чисел, которые можно подвергать статистической обработке. Примером такой шкалы является температурная шкала Кельвина, началом которой является абсолютный нуль.

При сравнении шкалы интервалов и отношений определено, что с помощью последней получаются более точные результаты. Кроме того, оценки, полученные по шкале интервалов, можно использовать с целью вычисления средних взвешенных величин, расчеты которых характерны для экспериментальных опросов. Шкала отношений может быть основной для экспертного метода, шкалу порядка можно применять при достаточном обосновании.

В практике экспертной оценки применяют два основных вида шкал-размерные и безразмерные. Данные безразмерных шкал выражают в долях единицы, процентах, баллах.

Математико-статистические методы обработки экспертных оценок - методы, предназначенные для повышения достоверности результатов оценки качества товаров экспертами.

Они подразделяются на четыре подгруппы: ранжирования, непосредственной оценки, последовательных предпочтений и парных сравнений.

Ранжирование - метод, основанный на расположении объектов экспертизы в возрастающем или убиваючому порядке.

Предназначен для решения многих практических задач, когда объекты, определяющие конечные результаты, не поддаются непосредственному измерению. Кроме того, отдельные объекты, характеризующихся различной природой, бывают несовместимыми, поскольку у них нет общей меры сравнения. Основанием для ранжирования является необходимость упорядочения любого объекта во времени и пространстве, а также в соответствии с измеряемой качества без проведения точных измерений. И наконец, в ситуации, когда качество, которое измеряется, в принципе не может быть измерено по причинам практического и теоретического характера.

Процедура ранжирования состоит в расположении объектов экспертом в наиболее рациональном порядке и присвоении им определенного ранга в виде числа натурального ряда. При этом ранг 1 получает наиболее важный объект, а ранг п - наименее важный. В результате получена шкала порядка, в которой число рангов равно числу объектов Если два объекта имеют одинаковые ранги, то им приписывают так называемые стандартизированные ранги, которые рассчитываются как среднее суммы мест объектов с одинаковыми рангами.

Например, шести объектам присвоены следующие ранги:

Объекты 2 и 5 поделили 2-е и 3-е места. их стандартизированный ранг будет равен

(2 + 3) /2 = 2,5.

Объекты 3, 4 и 6 поделили 4-е, 5-е и 6-е места, а их стандартизированный ранг равен 5:

(4 4-5 + б)/3 = 5. В результате получается следующее ранжирование:

Метод ранжирования редко применяется в чистом виде. Чаще всего он сочетается с методом непосредственной оценки или его модификациями (ранжированием по сумме оценок, комбинированным способом и др.).

Метод непосредственной оценки заключается в том, что диапазон изменения какой-либо количественной переменной разбивается на несколько интервалов, каждому из которых присваивается определенная оценка в баллах, например от 0 до 10. Шкала оценок может быть положительной и отрицательной, например, от +3 до -3.Эксперт должен включить каждый объект в определенный интервал в зависимости от его значения. Число интервалов, на которые разбивается весь диапазон изменения качества, может быть неодинаковым у разных экспертов. Отдельным экспертам разрешается оценивать одинаковым числом качественно различные факторы.

В некоторых случаях оказывается удобнее для выбора наиболее предпочтительного фактора сначала произвести оценку, а затем ранжирование.

Суммарные оценки рангов могут нормироваться, это позволяет установить более тесную связь между оценками, которые эксперты предоставили отдельным объектам. С этой целью оценки по всем объектам суммируются и в дальнейшем каждая из них делится на полученную сумму. Рассчитанные таким образом нормированные оценки можно снова подвергнуть ранжуванню.

При проведении экспертизы несколькими экспертами стремятся получить усредненную оценку для каждого объекта. С этой целью нормированные оценки каждого объекта суммируются, полученная сумма делится на число экспертов. Второй способ определения зависимости между оценками факторов заключается в том, что важнейшему фактору дается оценка (устанавливается весомость) за определенным числом 1 или 10, следующие факторы оцениваются как доля важнейшего фактора. Преимущество метода в том, что облегчается процесс выбора оценок, потому что не нужно каждый раз сопоставлять весь ряд, а лишь учитывать значение первой и предыдущей по важности оценки. Оценки усредняются путем расчета средней арифметической.

Метод последовательных преимуществ - основанный на сравнении отдельного объекта с суммой последующих объектов для установления его важности. применяется при измерении уровня качества, оценке деятельности научных организаций. Метод имеет такое основное преимущество по сравнению с другими методами, которая дает возможность сопоставления и измерения качественно различных факторов.

Метод разработан В. Черчменом и Г. Акофом и предназначен для проведения сравнений с учетом определенных допусков.

Порядок представления результатов или их группировки не влияют на преимущества.

Процедура последовательных сравнений заключается в следующем. Эксперту представляется ряд объектов (показателей, факторов, результатов), которые необходимо оценить по их относительной важности (значимости), и он производит ранжирование. Наиболее важному объекту присваивается оценка, равная 1, остальных объектов - оценки ниже 1 до 0 в порядке их относительной важности. Затем эксперт устанавливает, является ли объект с оценкой 1 более важным, чем сумма последних факторов. Если важность объекта велика, то он увеличивает оценку, чтобы она была больше, чем сумма всех других.

Если значение объекта ниже, чем сумма всех других он корректирует оценки.

Таким образом, используемая процедура состоит в систематической проверке оценок путем их последовательного сравнения.

Метод последовательных предпочтений целесообразно применять, если число сравниваемых объектов не превышает 7. При большем количестве объектов их необходимо разбивать на подгруппы, которые включают 6 объектов. В тех случаях, когда это невозможно, следует использовать метод парных сравнений.

Метод парных сравнений - основан на сравнении объектов экспертизы попарно для установления наиболее важного в каждой паре.

Применяется с целью выявления преимущества среди значительного количества факторов, проблем, показателей. Эксперты могут просто проводить сравнение с констатацией превосходства одного фактора перед другим. Возможно применение специальной шкалы предпочтений, где каждая степень преимущества имеет свою определенную оценку.

Метод парных сравнений может использоваться и для установления суммарных рангов факторов.

Для облегчения процедуры составляют матрицы парных уравнений, в которых все объекты (факторы) записывают в одном и том же порядке дважды: в верхней строке и крайнем левом столбце. Каждый эксперт должен проставить на пересечении строки и столбца оценку для двух сравниваемых факторов. В зависимости от того, какой фактор является наиболее важным, эта оценка будет равна соответственно 1 или 0. В главной диагонали такой матрицы проставляются прочерки или нули (таблица. 1.2).

Таблица 1.2.

Каждая пара факторов может сравниваться единожды или дважды. Существуют различные варианты частичного парного сравнения: выбор предпочтительного объекта из заранее сгруппированных пар; частичное парное сопоставление одной группы объектов со всеми другими, тогда как остальные факторы сопоставляется с некоторыми другими; установление суммарных рангов факторов.

Метод парных сравнений иногда сочетают с предварительным ранжированием объектов, при этом парное сравнение используется для уточнения преимущества отдельных объектов. В этом случае строится дополнительная матрица, в которой указывается доля случаев, когда один фактор оказывается более значимым, чем другой, в общем числе полученных оценок.

Методы экспертной оценки показателей качества товаров - это методы определения действительных значений единичных и комплексных показателей качества.

Предназначены для определения значений показателя качества расчетным или эвристическим путем в случаях, когда использование измерительных методов невозможно или неэкономичное из-за чрезмерных расходов на их применения или длительного времени испытаний. Например, при определении вкуса и запаха пищевых продуктов используются только органолептические методы. Измерительные методы не дают точной надежной оценки, не смотря на повышенные затраты.

Для дифференциальной и комплексной оценки образцов, которые значительно отличаются по качеству, рекомендуется определять значение единичного показателя Р следующим образом:

где Р;5- базовое (эталонное значение).

Другой, более точный метод основан на исследовании показателей с целью определения видов зависимости и, т. е. с целью разработки формул для расчетов оценок показателей:

Оценка единичных показателей качества начинается с определения допустимых интервалов их изменения (Р; - Р;) Р; -наилучшее значение показателя, превышение которого нецелесообразно или невозможно. Принципы назначения максимально допустимого значения показателя зависят от цели оценки качества, при этом необходимо чтобы для всех показателей этот принцип был единым.

Повышение надежности экспертных оценок достигаете путем разделения сложных операций на простые, которые составляют многоступенчатую процедуру оценки допустимых значений показателя. Переход к каждому следующему уровню осуществляется после принятия согласованных решений на предыдущий.

Экспертная процедура определения допустимых значений показателей качества заключается в ряде операций:

выдачи экспертам анкет и пояснительных записок, в которых перечислены показатели качества и описаны принципы выбора допустимых значений показателей;

заполнения экспертами анкет и указания конкретных моделей продукции, значения которых они считают предельно допустимые;

ознакомление каждого эксперта с оценками, указанными другими экспертами, и их обсуждение;

проведение второго (иногда третьего и четвертого) тура анкетирования;

Усреднение результатов оценки.

При значительной разнице мнений проводится дополнительный тур голосования. Значение показателя берется за максимальное, если за него подано не менее 70% голосов. При невыполнении этого условия за максимально допустимое значение принимается среднее из 50% наибольших значений рімакс, за минимальное допустимое значение - среднее из 50% наибольших значений значения используются экспертами при определении оценок показателей качества К.

Для определения экспертами вида зависимостей (и) между значением показателей Г; и их оценкам К нередко используется "главный метод точек". Необходимость его использования обусловлена тем, что разделение процедуры оценки на несколько этапов упрощает работу эксперта и позволяет ему дать оценки некоторым характерным точкам, исходя из которых можно построить модель действительной величины.

"Метод главных точек" в зависимости от их числа имеет несколько разновидностей.

"Метод трех главных точек" - основан на разделении значений показателей Г; на максимальное, минимальное, среднее значения и определении значений оценок Р; в этих точках. Интервал шкалы между максимальной и минимальной точками задается заранее (шкалы 0-1 или 0-10). В задачу эксперта входит также определение тенденции зависимости в интервале между главными точками и построение графика. После этого от графической зависимости можно перейти к аналитической формулы для расчета оценок показателя качества Кі "Метод трех главных точек" позволяет разработать лишь приближенную модель оценки.

"Метод семи главных точек" - метод оценки по семибалльной шкале оценки показателей, значения которых определены экспериментальным или расчетным путем, а также органолептическим методом.

Семибальна шкала является равномерной, то есть при переходе от одного класса качества в другой оценка меняется на один балл. Эти шкалы нашли широкое применение, особенно при органолептической оценке. Для получения более точных результатов следует перейти к определению вида зависимости между оценками и баллами.

Для облегчения работы эксперта в пояснительной записке к анкете приводят пять графиков. Эксперт выбирает кривую (или комбинацию кривых), которая лучше всего, по его мнению, отражает характер зависимости и Затем каждому класс качества назначается оценка в соответствии с характеров зависимости и значениями показателей качества. При этом целесообразно пользоваться числами в интервале 0-10, кратными 0,5, причем класс "высочайшее качество" получает оценку 10.

Таким образом, график, построенный экспертом, характеризует зависимость между абсолютными значениями показателей Pi и их оценками К;, а для показателей, оцениваемых органолептическим методами, - между классами качества и их оценками.

В заключение проводится обсуждение полученных результатов, их обработка и анализ. Для показателей, которые определяются измерительным и расчетным методами, желательно дать аналитическое описание кривых, что позволяет рассчитать оценку для любых значений показателей.

Применение "метода главных точек" дает возможность осуществлять группировку и классификацию показателей по видам зависимости.

Определение комплексных показателей качества осуществляется двумя видами методов:

методами комплексной оценки качества образцов товаров;

методами построения моделей комплексных показателей качества.

Методы комплексной оценки качества имеют две разновидности - экспресс-метод и методы движения по уровням без подготовки и с подготовкой.

Экспресс-методы комплексной оценки качества образцов товаров основаны на определении комплексного показателя качества путем анализа значений отдельных единичных показателей и внешнего вида без предварительной их оценки и с учетом коэффициентов весомости.

При использовании этих методов необходимо учесть, что предельным количеством оцениваемых показателей даже для высококвалифицированного эксперта 7-9 показателей, расположенных на одном уровне иерархии, которые составляют довольно однородную группу. Кроме того, эксперты должны учитывать важность отдельных показателей с помощью коэффициентов весомости, взаимосвязь между ними, а также рассматривать качество товара как систему.

Метод движения по уровням без подготовки является комплексом операций, которые осуществляются последовательно, с постепенным повышением уровня. При этом анализ начинается с нижнего уровня дерева показателей. С учетом значения показателей нижнего уровня эксперт дает оценку показателям вышележащего уровня. Эти операции повторяются с повышением уровня до тех пор, пока не будет достигнут верхний уровень - комплексная (обобщенная) оценка качества.

Метод движения по уровням с подготовкой основан на предварительном определении экспертами коэффициентов весомости показателей качества и их оценок. При назначении комплексных оценок эксперту известны средние значения коэффициентов весомости и оценки единичных показателей. Процедура определения комплексных показателей аналогична процедуре метода движения по уровнях без подготовки.

Формализация процесса экспертной оценки заключается в нахождении зависимости между значениями показателей качества Г; (или их оценкам К) и показателем качества вышележащего уровня, т. е. в определении вида решающей функции, которой пользуются эксперты при назначении комплексных показателей. При этом решающая функция, как и любая модель упрощает объект исследования, поскольку учитываются не все показатели и связи между ними.

Исходными данными для определения вида функции могут служить результаты оценки качества различных образцов экспресс-методами или методами движения по уровням. Тогда оценки, назначенные экспертами, сводятся в общую матрицу, каждая строка которой является набором оценок единичных показателей образца и комплексных экспертных оценок. На основании этого могут быть разработаны машинные алгоритмы и составлены программы для нахождения решающих функций с помощью ЭВМ .

3.4. ЭКСПЕРТНЫЕ МЕТОДЫ

В главе обсуждаются основные вопросы теории и практики экспертных оценок, в том числе связанные с типовыми стадиями экспертного опроса, методами подбора экспертов, разработкой регламентов проведения сбора и анализа экспертных мнений. Рассмотрены основные идеи современной теории измерений, метода согласования кластеризованных ранжировок и ряда других математических методов анализа экспертных оценок.

3.4.1. Зачем менеджеру экспертные оценки?

Какова будет реакция потребителей на рекламную компанию? Как изменится социальная, технологическая, экологическая, экономическая, политическая ситуация через десять лет? Будет ли обеспечена экологическая безопасность промышленных производств или же вокруг будет простираться рукотворная пустыня? Достаточно вдуматься в эту постановку вопроса, проанализировать, как десять лет назад мы представляли себе сегодняшний день, чтобы понять, что стопроцентно надежных прогнозов просто не может быть. Вместо утверждений с конкретными числами можно ожидать лишь качественных оценок. Тем не менее мы должны принимать решения, например, об экологических и иных проектах и инвестициях, последствия которых скажутся через десять, двадцать и более лет.

Бесспорно совершенно, что для принятия обоснованных решений необходимо опираться на опыт, знания и интуицию специалистов. После второй мировой войны в рамках кибернетики, теории управления, менеджмента и исследования операций стала развиваться самостоятельная дисциплина - теория и практика экспертных оценок.

Методы экспертных оценок - это методы организации работы со специалистами-экспертами и обработки мнений экспертов . Эти мнения обычно выражены частично в количественной, частично в качественной форме. Экспертные исследования я проводят с целью подготовки информации для принятия решений лицом, принимающим решения (ЛПР). Для проведения работы по методу экспертных оценок создают Рабочую группу (сокращенно РГ), которая и организует по поручению ЛПР деятельность экспертов, объединенных (формально или по существу) в экспертную комиссию (ЭК).

Экспертные оценки бывают индивидуальные и коллективные . Индивидуальные оценки - это оценки одного специалиста. Например, преподаватель единолично ставит отметку студенту, а врач - диагноз больному. Но в сложных случаях заболевания или при угрозе отчисления студента за плохую учебу обращаются к коллективному мнению - симпозиуму врачей или комиссии преподавателей. Аналогичная ситуация - в армии. Обычно командующий принимает решение единолично. Но в сложных и ответственных ситуациях проводят военный совет. Один из наиболее известных примеров такого рода - военный совет 1812 г. в Филях, на котором под председательством М.И. Кутузова решался вопрос: "Давать или не давать французам сражение под Москвой?"

Другой простейший пример экспертных оценок - оценка номеров в КВН. Каждый из членов жюри поднимают фанерку со своей оценкой, а технический работник вычисляет среднюю арифметическую оценку, которая и объявляется как коллективное мнение жюри (ниже мы увидим, что такой подход некорректен с точки зрения теории измерений).

В фигурном катании процедура усложняется - перед усреднением отбрасываются самая большая и самая маленькая оценки. Это делается для того, чтобы не было соблазна завысить оценку одной спортсменке (например, соотечественнице) или занизить другой. Такие резко выделяющиеся из общего ряда оценки будут сразу отброшены.

Экспертные оценки часто используются при выборе - одного варианта технических устройств из нескольких, группы космонавтов из многих претендентов, набора проектов научно-исследовательских работ для финансирования из массы заявок, получателей экологических кредитов из многих желающих, выбор инвестиционных проектов для реализации среди представленных, и т.д.

Существует масса методов получения экспертных оценок. В одних с каждым экспертом работают отдельно, он даже не знает, кто еще является экспертом, а потому высказывает свое мнение независимо от авторитетов. В других экспертов собирают вместе для подготовки материалов для ЛПР, при этом эксперты обсуждают проблему друг с другом, учатся друг у друга, и неверные мнения отбрасываются. В одних методах число экспертов фиксировано и таково, чтобы статистические методы проверки согласованности мнений и затем их усреднения позволяли принимать обоснованные решения. В других - число экспертов растет в процессе проведения экспертизы, например, при использовании метода "снежного кома" (о нем - ниже). Не меньше существует и методов обработки ответов экспертов, в том числе весьма насыщенных математикой и компьютеризированных

Один из наиболее известных методов экспертных оценок - это метод "Дельфи" . Название дано по ассоциации с Дельфийским храмом, куда согласно древнему обычаю было принято обращаться для получения поддержки при принятии решений. Он был расположен у выхода ядовитых вулканических газов. Жрицы храма, надышавшись отравы, начинали пророчествовать, произнося непонятные слова. Специальные "переводчики" - жрецы храма толковали эти слова и отмечали на вопросы пришедших со своими проблемами паломников.

В США в 1960-х годах методом Дельфи назвали экспертную процедуру прогнозирования научно-технического развития. В первом туре эксперты называли вероятные даты тех или иных будущих свершений. Во втором туре каждый эксперт знакомился с прогнозами всех остальных. Если его прогноз сильно отличался от прогнозов основной массы, его просили пояснить свою позицию, и часто он изменял свои оценки, приближаясь к средним значениям. Эти средние значения и выдавались заказчику как групповое мнение. Надо сказать, что реальные результаты исследования оказались довольно скромными - хотя дата высадки американцев на Луну была предсказана с точностью до месяца, все остальные прогнозы провалились - холодного термоядерного синтеза и средства от рака в ХХ в. человечество не дождалось. Однако сама методика оказалась популярной - за последующие годы она использовалась не менее 40 тыс. раз. Средняя стоимость экспертного исследования по методу Дельфи - 5 тыс. долларов США, но в ряде случаев приходилось расходовать и более крупные суммы - до 130 тыс. долларов.

Несколько в стороне от основного русла экспертных оценок лежит метод сценариев , применяемый прежде всего для экспертного прогнозирования. Рассмотрим основные идеи технологии сценарных экспертных прогнозов. Экологическое или социально-экономическое прогнозирование, как и любое прогнозирование вообще, может быть успешным лишь при некоторой стабильности условий. Однако решения органов власти, отдельных лиц, иные события меняют условия, и события развиваются по-иному, чем ранее предполагалось. При разработке методологического, программного и информационного обеспечения анализа риска химико-технологических проектов необходимо составить детальный каталог сценариев аварий, связанных с утечками токсических химических веществ. Каждый из таких сценариев описывает аварию своего типа, со своим индивидуальным происхождением, развитием, последствиями, возможностями предупреждения. Таким образом, метод сценариев - это метод декомпозиции задачи прогнозирования, предусматривающий выделение набора отдельных вариантов развития событий (сценариев), в совокупности охватывающих все возможные варианты развития. При этом каждый отдельный сценарий должен допускать возможность достаточно точного прогнозирования, а общее число сценариев должно быть обозримо.

Возможность подобной декомпозиции не очевидна. При применении метода сценариев необходимо осуществить два этапа исследования:
- построение исчерпывающего, но обозримого набора сценариев;
- прогнозирование в рамках каждого конкретного сценария с целью получения ответов на интересующие исследователя вопросы.

Каждый из этих этапов лишь частично формализуем. Существенная часть рассуждений проводится на качественном уровне, как это принято в общественно-экономических и гуманитарных науках. Одна из причин заключается в том, что стремление к излишней формализации и математизации приводит к искусственному внесению определенности там, где ее нет по существу, либо к использованию громоздкого математического аппарата. Так, рассуждения на словесном уровне считаются доказательными в большинстве ситуаций, в то время как попытка уточнить смысл используемых слов с помощью, например, теории нечетких множеств приводит к весьма громоздким математическим моделям. Набор сценариев должен быть обозрим. Приходится исключать различные маловероятные события. Само по себе создание набора сценариев - предмет экспертного исследования. Кроме того, эксперты могут оценить вероятности реализации того или иного сценария. Прогнозирование в рамках каждого конкретного сценария с целью получения ответов на интересующие исследователя вопросы также осуществляется в соответствии с описанной выше методологией прогнозирования. При стабильных условиях могут быть применены статистические методы прогнозирования временных рядов. Однако этому предшествует анализ с помощью экспертов, причем зачастую прогнозирование на словесном уровне является достаточным (для получения интересующих исследователя и ЛПР выводов) и не требующим количественного уточнения.

Как известно, при принятии решений на основе анализа ситуации , в том числе результатов прогнозных исследований, можно исходить из различных критериев. Так, можно ориентироваться на то, что ситуация сложится наихудшим, или наилучшим, или средним (в каком-либо смысле) образом. Можно попытаться наметить мероприятия, обеспечивающие минимально допустимые полезные результаты при любом варианте развития ситуации, и т.д.

Еще один вариант экспертного оценивания - мозговой штурм . Организуется он как собрание экспертов, на выступления которых наложено одно, но очень существенное ограничение - нельзя критиковать предложения других. Можно их развивать, можно высказывать свои идеи, но нельзя критиковать! В ходе заседания эксперты, "заражаясь" друг от друга, высказывают все более экстравагантные соображения. Часа через два записанное на магнитофон или видеокамеру заседание заканчивается, и начинается второй этап мозгового штурма - анализ высказанных идей. Обычно из 100 идей 30 заслуживают дальнейшей проработки, из 5-6 дают возможность сформулировать прикладные проекта, а 2-3 оказываются в итоге приносящими полезный эффект - прибыль, повышение экологической безопасности и т.п. При этом интерпретация идей - творческий процесс. Например, при обсуждении возможностей защиты кораблей от торпедной атаки была высказана идея: "Выстроить матросов вдоль борта и дуть на торпеду, чтобы изменить ее курс". После проработки эта идея привела к созданию устройств, создающих волны, сбивающиеся торпеду с курса.

3.4.2. Основные стадии экспертного опроса

Как показывает опыт проведения экспертных исследований, с точки зрения менеджера - организатора такого исследования целесообразно выделять следующие стадии проведения экспертного опроса.

1) Принятие решения о необходимости проведения экспертного опроса и формулировка Лицом, Принимающим Решения (ЛПР) его цели. Таким образом, инициатива должна исходить от руководства, что в дальнейшем обеспечит успешное решение организационных и финансовых проблем.

2) Подбор и назначение ЛПР основного состава Рабочей группы, сокращенно РГ (обычно - научного руководителя и секретаря). При этом научный руководитель отвечает за организацию и проведение экспертного исследования в целом, а также за анализ собранных материалов и формулировку заключения экспертной комиссии. Он участвует в формировании коллектива экспертов и выдаче задания каждому (вместе с ЛПР или его представителем). Дело секретаря - ведение документации, решение организационных задач.

3) Разработка РГ (точнее, ее основным составом, прежде всего научным руководителем и секретарем) и утверждение у ЛПР технического задания на проведение экспертного опроса. На этой стадия решение о проведении экспертного опроса приобретает четкость во времени, финансовом, кадровом, материальном и организационном обеспечении. В частности, в РГ выделяются различные группы специалистов - аналитическая, эконометрическая (специалисты по методам анализа данных), компьютерная, по работе с экспертами (например, интервьюеров), организационная. Очень важно для успеха, чтобы все эти направления работ были утверждены ЛПР.

4) Разработка аналитической группой РГ подробного сценария (т.е. регламента ) проведения сбора и анализа экспертных мнений (оценок). Сценарий включает в себя прежде всего конкретный вид информации, которая будет получена от экспертов (например, тексты (слова), условные градации, числа, ранжировки, разбиения или иные виды объектов нечисловой природы). Так, довольно часто экспертов просят высказаться в свободной форме, ответив при этом на некоторые количество заранее сформулированных вопросов. Кроме того, их просят заполнить формальную карту, в каждом пункте выбрав одну из нескольких градаций. Сценарий должен содержать и конкретные методы анализа собранной информации. Например, вычисление медианы Кемени, статистический анализ люсианов, применение иных методов статистики объектов нечисловой природы и других разделов современной эконометрики. Эта работа ложится на эконометрическую и компьютерную группу РГ. Традиционная ошибка - сначала собрать информацию, а потом думать, что с ней делать. В результате, как показывает опыт, информация используется лишь на 1-2%.

5) Подбор экспертов в соответствии с их компетентностью. На этой стадии РГ составляет список возможных экспертов.

6) Формирование экспертной комиссии . На этой стадии РГ проводит переговоры с экспертами, получает их согласие на работу в экспертной комиссии (сокращенно ЭК), возможно, часть намеченных РГ экспертов отказывается по тем или иным причинам. ЛПР утверждает состав экспертной комиссии, возможно, вычеркнув или добавив часть экспертов к предложениям РГ. Проводится заключение договоров с экспертами об условиях их работы и ее оплаты.

7) Проведение сбора экспертной информации. Часто перед этим проводится набор и обучение интервьюеров - одной из групп, входящих в РГ.

8) Компьютерный анализ экспертной информации с помощью включенных в сценарий методов. Ему обычно предшествует введение информации в компьютеры.

9) При применении согласно сценарию экспертной процедуры из нескольких туров - повторение двух предыдущих этапов.

10) Итоговый анализ экспертных мнений, интерпретация полученных результатов аналитической группой РГ и подготовка заключительного документа ЭК для ЛПР.

11) Официальное окончание деятельности РГ, в том числе утверждение ЛПР заключительного документа ЭК, подготовка и утверждение научного и финансового отчетов РГ о проведении исследования, оплата труда экспертов и сотрудников РГ, официальное прекращение деятельности (роспуск) ЭК и РГ.

Разберем подробнее отдельные стадии экспертного исследования.

3.4.3. Подбор экспертов

Проблема подбора экспертов является одной из наиболее сложных в теории и практике экспертных исследований. Очевидно, в качестве экспертов необходимо использовать тех людей, чьи суждения наиболее помогут принятию адекватного решения. Но как выделить, найти, подобрать таких людей? Надо прямо сказать, что нет методов подбора экспертов, наверняка обеспечивающих успех экспертизы.

В проблеме подбора экспертов можно выделить две составляющие - составление списка возможных экспертов и выбор из них экспертной комиссии в соответствии с компетентностью кандидатов.

Составление списка возможных экспертов облегчается тогда, когда рассматриваемый вид экспертизы проводится многократно. В таких ситуациях обычно ведется реестр возможных экспертов, например, в области государственной экологической экспертизы или судейства фигурного катания, из которого можно выбирать по различным критериям или с помощью датчика псевдослучайных чисел.

Как быть, если экспертиза проводится впервые, устоявшиеся списки возможных экспертов отсутствуют? Однако и в этом случае у каждого конкретного специалиста есть некоторое представление о том, что требуется от эксперта в подобной ситуации. Для формирования списка есть полезный метод "снежного кома", при котором от каждого специалиста, привлекаемого в качестве эксперта, получают несколько фамилий тех, кто может быть экспертом по рассматриваемой тематике. Очевидно, некоторые из этих фамилий встречались ранее в деятельности РГ, а некоторые - новые. Каждого вновь появившегося опрашивают по той же схеме. Процесс расширения списка останавливается, когда новые фамилии практически перестают встречаться. В результате получается достаточно обширный список возможных экспертов. Метод "снежного кома" имеет и недостатки. Число туров до остановки процесса наращивания кома нельзя заранее предсказать. Кроме того, ясно, что если на первом этапе все эксперты были из одного "клана", придерживались в чем-то близких взглядов или занимались сходной деятельностью, то и метод "снежного кома" даст, скорее всего, прежде всего лиц из этого "клана". Мнения и аргументы других "кланов" будут упущены.

Вопрос об оценке компетентности экспертов не менее сложен. Успешность участия в предыдущих экспертизах - хороший критерий для деятельности дегустатора, врача, судьи в спортивных соревнованиях, т.е. таких экспертов, которые участвуют в длинных сериях однотипных экспертиз. Однако, увы, наиболее интересны и важны уникальные экспертизы больших проектов, не имеющих аналогов. Использование формальных показателей экспертов (должность, ученые степень и звание, стаж, число публикаций...), очевидно, в современных условиях может носить лишь вспомогательный характер, хотя подобные показатели проще всего применять.

Часто предлагают использовать методы самооценки и взаимооценки компетентности экспертов. Обсудим их, начав с метода самооценки, при котором эксперт сам дает информацию о том, в каких областях он компетентен, а в каких - нет. С одной стороны, кто лучше может знать возможности эксперта, чем он сам? С другой стороны, при самооценке компетентности скорее оценивается степень самоуверенности эксперта, чем его реальная компетентность. Тем более, что само понятие "компетентность" строго не определено. Можно его уточнять, выделяя составляющие, но при этом усложняется предварительная часть деятельности экспертной комиссии. Достаточно часто эксперт преувеличивает свою реальную компетентность. Например, большинство людей считают, что они хорошо разбираются в политике, экономике, проблемах образования и воспитания, семьи и медицины. На самом деле экспертов (и даже знающих людей) в этих областях весьма мало. Бывают уклонения и в другую сторону, излишне критичное отношение к своим возможностям.

При использовании метода взаимооценки, помимо возможности проявления личностных и групповых симпатий и антипатий, играет роль малая осведомленность экспертов о возможностях друг друга. В современных условиях достаточно хорошее знакомство с работами и возможностями друг друга может быть лишь у специалистов, много лет (не менее 3-4) работающих совместно, в одной комнате, над одной темой. Именно про такие пары можно сказать, что они "вместе пуд соли съели ". Однако привлечение таких пар специалистов не очень-то целесообразно, поскольку их взгляды из-за схожести жизненного пути слишком похожи друг на друга.

Если процедура экспертного опроса предполагает непосредственное общение экспертов, необходимо учитывать еще ряд обстоятельств. Большое значение имеют их личностные (социально-психологические) качества. Так, один-единственный "говорун " может парализовать деятельность всей комиссии на совместном заседании. К срыву могут привести и неприязненные отношения членов комиссии, и сильно различающийся научный и должностной статус членов комиссии. В подобных случаях важно соблюдение регламента работы, разработанного РГ.

Необходимо подчеркнуть, что подбор экспертов в конечном счете - функция Рабочей группы, и никакие методики подбора не снимают с нее ответственности. Другими словами, именно на Рабочей группе лежит ответственность за компетентность экспертов, за их принципиальную способность решить поставленную задачу. Важным является требование к ЛПР об утверждении списка экспертов. При этом ЛПР может как добавить в комиссию отдельных экспертов, так и вычеркнуть некоторых из них - по собственным соображениям, с которыми членам РГ и ЭК знакомиться нет необходимости.

Существует ряд нормативных документов, регулирующих деятельность экспертных комиссий в тех или иных областях. Примером является Закон Российской Федерации "Об экологической экспертизе" от 23 ноября 1995 г., в котором регламентируется процедура экспертизы "намечаемой хозяйственной или иной деятельности" с целью выявления возможного вреда, который может нанести рассматриваемая деятельность окружающей природной среде.

3.4.4. О разработке регламента проведения сбора и анализа экспертных мнений

Существует масса методов получения экспертных оценок. В одних с каждым экспертом работают отдельно, он даже не знает, кто еще является экспертом, а потому высказывает свое мнение независимо от авторитетов, "кланов" и отдельных коллег. В других экспертов собирают вместе для подготовки материалов для ЛПР, при этом эксперты обсуждают проблему друг с другом, принимают или отвергают аргументы друг друга, учатся друг у друга, и неверные или недостаточно обоснованные мнения отбрасываются. В одних методах число экспертов фиксировано и таково, чтобы статистические методы проверки согласованности мнений и затем (в случае достаточно хорошей согласованности мнений) их усреднения позволяли принимать обоснованные решения с точки зрения эконометрики. В других - число экспертов растет в процессе проведения экспертизы, например, при использовании метода "снежного кома" для формирования команды экспертов.

В настоящее время не существует общепринятой научно обоснованной классификации методов экспертных оценок и тем более - однозначных рекомендаций по их применению. Попытка силой утвердить одну из возможных точек зрения может принести лишь вред.

Однако для рассказа о многообразии экспертных оценок необходима какая-либо рабочая классификация методов. Одну из таких возможных классификаций мы даем ниже, перечисляя основания, по которым мы делим экспертные оценки.

Один из основных вопросов - что именно должна представить экспертная комиссия в результате своей работы - информацию для принятия решения ЛПР или проект самого решения? От ответа на этот методологический вопрос зависит организация работы экспертной комиссии, и он служит первым основанием для разбиения методов.

ЦЕЛЬ - СБОР ИНФОРМАЦИИ ДЛЯ ЛПР. Тогда Рабочая группа должна собрать возможно больше относящейся к делу информации, аргументов "за" и "против" определенных вариантов решений. Полезен следующий метод постепенного увеличения числа экспертов. Сначала первый эксперт приводит свои соображения по рассматриваемому вопросу. Составленный им материал передается второму эксперту, который добавляет свои аргументы. Накопленный материал поступает к следующему - третьему - эксперту... Процедура заканчивается, когда иссякает поток новых соображений.

Отметим, что эксперты в рассматриваемом методе только поставляют информацию, аргументы "за" и "против", но не вырабатывают согласованного проекта решения. Нет никакой необходимости стремиться к тому, чтобы экспертные мнения были согласованы между собой. Более того, наибольшую пользу приносят эксперты с мышлением, отклоняющимся от массового. Именно от них следует ожидать наиболее оригинальных аргументов.

ЦЕЛЬ - ПОДГОТОВКА ПРОЕКТА РЕШЕНИЯ ДЛЯ ЛПР. Математические методы в экспертных оценках применяются обычно именно для решения задач, связанных с подготовкой проекта решения. При этом зачастую некритически принимают догмы согласованности и одномерности. Эти догмы "кочуют" из одной публикации в другую, поэтому целесообразно их обсудить.

ДОГМА СОГЛАСОВАННОСТИ. Часто без всяких оснований считается, что решение может быть принято лишь на основе согласованных мнений экспертов. Поэтому исключают из экспертной группы тех, чье мнение отличается от мнения большинства. При этом отсеиваются как неквалифицированные лица, попавшие в состав экспертной комиссии по недоразумению или по соображениям, не имеющим отношения к их профессиональному уровню, так и наиболее оригинальные мыслители, глубже проникшие в проблему, чем большинство. Следовало бы выяснить их аргументы, предоставить им возможность для обоснования их точек зрения. Вместо этого их мнением пренебрегают.

Бывает и так, что эксперты делятся на две или более групп, имеющих единые групповые точки зрения. Так, известен пример деления специалистов при оценке результатов научно-исследовательских работ на две группы: "теоретиков", явно предпочитающих НИР, в которых получены теоретические результаты, и "практиков", выбирающих те НИР, которые позволяют получать непосредственные прикладные результаты (речь идет о конкурсе НИР в академическом Институте проблем управления (автоматики и телемеханики)). Иногда заявляют, что в случае обнаружения двух или нескольких групп экспертов опрос не достиг цели. Это не так! Цель достигнута - установлено, что единого мнения нет. Это весьма важно. И ЛПР при принятии решений должен это учитывать. Стремление обеспечить согласованность мнений экспертов любой целой может приводить к сознательному одностороннему подбору экспертов, игнорированию всех точек зрения, кроме одной, наиболее "полюбившейся" Рабочей группе (или даже "подсказанной" ЛПР).

Часто не учитывают еще одного чисто эконометрического обстоятельства. Поскольку число экспертов обычно не превышает 20-30, то формальная статистическая согласованность мнений экспертов (установленная с помощью тех или иных критериев проверки статистических гипотез) может сочетаться с реально имеющимся разделением экспертов на группы, что делает дальнейшие расчеты не имеющими отношения к действительности. Для примера обратимся к конкретным методам расчетов с помощью коэффициентов конкордации на основе коэффициентов ранговой корреляции Кендалла или Спирмена. Необходимо напомнить, что согласно эконометрической теории положительный результат проверки согласованности таким способом означает ни больше, ни меньше, как отклонение гипотезы о независимости и равномерной распределенности мнений экспертов на множестве всех ранжировок. Таким образом, проверяется нулевая гипотеза, согласно которой ранжировки, описывающие мнения экспертов, являются независимыми случайными бинарными отношениями, равномерно распределенными на множестве всех ранжировок. Отклонение этой нулевой гипотезы толкуется как согласованность ответов экспертов. Другими словами, мы падаем жертвой заблуждений, вытекающих из своеобразного толкования слов: проверка согласованности в указанном математико-статистическом смысле вовсе не является проверкой согласованности в смысле практики экспертных оценок. (Именно ущербность рассматриваемых математико-статистических методов анализа ранжировок привела группу специалистов к разработке нового эконометрического аппарата для проверки согласованности - непараметрических методов, основанных на т.н. люсианах и входящих в современный раздел эконометрики - статистику нечисловых данных ). Группы экспертов с близкими методами можно выделить эконометрическими методами кластер-анализа.

МНЕНИЯ ДИССИДЕНТОВ. С целью искусственно добиться согласованности стараются уменьшить влияние мнений экспертов-диссидентов , т.е. инакомыслящих по сравнению с большинством. Жесткий способ борьбы с диссидентами состоит в игнорировании их мнений, т.е. фактически в их исключении из состава экспертной комиссии. Отбраковка экспертов, как и отбраковка резко выделяющихся результатов наблюдений (выбросов), приводит к процедурам, имеющим плохие или неизвестные статистические свойства. Так, известна крайняя неустойчивость классических методов отбраковки выбросов по отношению к отклонениям от предпосылок модели. Мягкий способ борьбы с диссидентами состоит в применении робастных (устойчивых) статистических процедур . Простейший пример: если ответ эксперта - действительное число, то резко выделяющееся мнение диссидента сильно влияет на среднее арифметическое ответов экспертов и не влияет на их медиану. Поэтому разумно в качестве согласованного мнения рассматривать медиану. Однако при этом игнорируются (не достигают ЛПР) аргументы диссидентов. В любом из двух способов борьбы с диссидентами ЛПР лишается информации, идущей от диссидентов, а потому может принять необоснованное решение, которое впоследствии приведет к отрицательным последствиям. С другой стороны, представление ЛПР всего набора мнений снимает часть ответственности и труда по подготовке окончательного решения с комиссии экспертов и рабочей группы по проведению экспертного опроса и перекладывает эти ответственность и труд на плечи ЛПР.

ДОГМА ОДНОМЕРНОСТИ. Распространен довольно примитивный подход, согласно которому объект экспертизы всегда можно оценить одним числом . Странная идея! Оценивать человека одним числом приходило в голову лишь на невольничьих рынках . Вряд ли даже самые рьяные квалиметристы рассматривают книгу или картину как эквивалент числа - ее "рыночной стоимости".

Вместе с тем нельзя полностью отрицать саму идею поиска обобщенных показателей качества, технического уровня и аналогичных. Так, каждый объект можно оценивать по многим показателям качества. Например, легковой автомобиль можно оценивать по таким показателям: расход бензина на 100 км пути (в среднем); надежность (средняя стоимость ремонта за год); экологическая безопасность, оцениваемая по содержанию вредных веществ в выхлопных газах; маневренность; быстрота набора скорости 100 км/час после начала движения; максимальная достигаемая скорость; длительность сохранения в салоне положительной температуры при низкой наружной температуре (-50 градусов по Цельсию) и выключенном двигателе; дизайн (привлекательность и "модность" внешнего вида и отделки салона); вес, и т.д. Можно ли свести оценки по этим показателям вместе? Определяющей является конкретная ситуация, для которой выбирается автомашина. Максимально достигаемая скорость важна для гонщика, но, как нам представляется, не имеет большого практического значения для водителя рядовой частной машины, особенно в городе с суровым ограничением на максимальную скорость. Для такого водителя важнее расход бензина, маневренность и надежность. Для машин различных государственных служб, видимо, надежность важнее, чем для частника, а расход бензина - наоборот. Для районов Крайнего Севера важна теплоизоляция салона, а для южных районов - нет. И т.д. Таким образом, важна конкретная (узкая) постановка задачи перед экспертами. Но такой постановки зачастую нет. А тогда "игры" по разработке обобщенного показателя качества - например, в виде линейной функции от перечисленных переменных - не могут дать объективных выводов. Альтернативой единственному обобщенному показателю является математический аппарат типа многокритериальной оптимизации - множества Парето и т.д.

В некоторых случаях все-таки можно глобально сравнить объекты - например, с помощью тех же экспертов получить упорядочение рассматриваемых объектов - изделий или проектов. Тогда можно ПОДОБРАТЬ коэффициенты при отдельных показателях так, чтобы упорядочение с помощью линейной функции возможно точнее соответствовало глобальному упорядочению (например, найти эти коэффициенты методом наименьших квадратов). Наоборот, в подобных случаях НЕ СЛЕДУЕТ оценивать указанные коэффициенты с помощью экспертов. Эта простая идея до сих пор не стала очевидной для отдельных составителей методик по проведению экспертных опросов и анализу их результатов. Они упорно стараются заставить экспертов делать то, что они выполнить не в состоянии - указывать веса, с которыми отдельные показатели качества должны входить в итоговый обобщенный показатель. Эксперты обычно могут сравнить объекты или проекты в целом, но не могут вычленить вклад отдельных факторов. Раз организаторы опроса спрашивают, эксперты отвечают, но эти ответы не несут в себе надежной информации о реальности...

ВТОРОЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ ЭКСПЕРТНЫХ ПРОЦЕДУР - ЧИСЛО ТУРОВ. Экспертизы могут включать один тур, некоторое фиксированное число туров (два, три,…) или неопределенное число туров. Чем больше туров, тем более тщательным является анализ ситуации, поскольку эксперты при этом обычно много раз возвращаются к рассмотрению предмета экспертизы. Но одновременно увеличивается общее время на экспертизу и возрастает ее стоимость. Можно уменьшить расходы, вводя в экспертизу не всех экспертов сразу, а постепенно. Так, например, если цель состоит в сборе аргументов "за" и "против", то первоначальный перечень аргументов может быть составлен одним экспертом. Второй добавит к нему свои аргументы. Суммарный материал поступит к первому и третьему, которые внесут свои аргументы и контраргументы. И так далее - добавляется по одному эксперту на каждый новый тур. Наибольшие сложности вызывают процедуры с заранее неопределенным числом туров, например, "снежный ком". Часто задают максимально возможное число туров, и тогда неопределенность сводится к тому, придется ли проводить это максимальное число туров или удастся ограничиться меньшим числом.

ТРЕТЬЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ ЭКСПЕРТНЫХ ПРОЦЕДУР - ОРГАНИЗАЦИЯ ОБЩЕНИЯ ЭКСПЕРТОВ. Рассмотрим достоинства и недостатки каждого из элементов шкалы: отсутствие общения - заочное анонимное общение - заочное общение без анонимности - очное общение с ограничениями - очное общение без ограничений. При отсутствии общения эксперт высказывает свое мнение, ничего не зная о других экспертах и об их мнениях. Он полностью независим, что и хорошо, и плохо. Обычно такая ситуация соответствует однотуровой экспертизе. Заочное анонимное общение , например, как в методе Дельфи, означает, что эксперт знакомится с мнениями и аргументами других экспертов, но не знает, кто именно высказал то или иное положение. Следовательно, в экспертизе должно быть предусмотрено хотя бы два тура. Заочное общение без анонимности соответствует, например, общению по Интернету. Все варианты заочной экспертизы хороши тем, что нет необходимости собирать экспертов вместе, следовательно, находить для этого удобное время и место. При очных экспертизах эксперты говорят, а не пишут, как при заочных, и потому успевают за то же время сказать существенно больше. Очная экспертиза с ограничениями весьма распространена. Это - собрание, идущее по фиксированному регламенту. Примером является военный совет в императорской русской армии, когда эксперты (офицеры и генералы) высказывались в порядке от младшего (по чину и должности) к старшему. Наконец, очная экспертиза без ограничений - это свободная дискуссия. Все очные экспертизы имеют недостатки, связанные с возможностями отрицательного влияния на их проведение социально-психологических свойств и клановых (партийных) пристрастий участников, а также неравенства их профессионального, должностного, научного статусов. Представьте себе, что соберутся вместе 5 лейтенантов и 3 генерала. Независимо от того, какая информация имеется у того или иного участника встречи, ход ее предсказать нетрудно: генералы будут говорить, а лейтенанты - помалкивать.

КОМБИНАЦИЯ РАЗЛИЧНЫХ ВИДОВ ЭКСПЕРТИЗЫ. Реальные экспертизы часто представляют собой комбинации различных описанных выше типов экспертиз. В качестве примера рассмотрим защиту студентом дипломного проекта. Сначала идет многотуровая очная экспертиза, проводимая научным руководителем и консультантами, в результате студент подготавливает проект к защите. Затем два эксперта работают заочно - это автор отзыва сторонней организации и заведующий кафедрой, допускающий работу к защите. Обратите внимание на различие задач этих экспертов и объемов выполняемой ими работы - один пишет подробный отзыв, второй росписью на титульном листе проекта разрешает его защиту. Наконец - очная экспертиза без ограничений (для членов государственной аттестационной комиссии). Дипломный проект оценивается коллегиально, по большинству голосов, при этом один из экспертов (научный руководитель) знает работу подробно, а остальные - в основном лишь по докладу. Таким образом, имеем сочетание многотуровой и однотуровой, заочных и очных экспертиз. Подобные сочетания характерны для многих реально проводящихся экспертиз.

3.4.5. Современная теория измерений и экспертные оценки

Для дальнейшего более углубленного рассмотрения проблем экспертных оценок понадобятся некоторые понятия так называемой репрезентативной теории измерений , служащей основой теории экспертных оценок, прежде всего той ее части, которая связана с анализом заключений экспертов, выраженных в качественном (а не в количественном) виде.

Мнения экспертов часто выражены в порядковой шкале (подробнее о шкалах говорится ниже), т.е. эксперт может сказать (и обосновать), что один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или убывания) интенсивности интересующей организаторов экспертизы характеристики. Ранг - это номер (объекта экспертизы) в упорядоченном ряду. Формально ранги выражаются числами 1, 2, 3, ..., но с этими числами нельзя делать привычные арифметические операции. Например, хотя 1 + 2 = 3, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении, интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не всем известная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Это и есть РТИ. Надо иметь в виду, что в настоящее время термин "теория измерений" применяется для обозначения целого ряда научных дисциплин: классической метрологии, РТИ, некоторых других направлений, например, алгоритмической теории измерений.

Сначала РТИ развивалась как теория психофизических измерений. Основоположник РТИ американский психолог С.С. Стивенс основное внимание уделял шкалам измерения. Характерен следующий этап развития РТИ. Один из томов выпущенной в США в 1950-х годах "Энциклопедии психологических наук" назывался "Психологические измерения". Значит, составители этого тома расширили сферу применения РТИ с психофизики на психологию в целом. А в основной статье в этом сборнике под названием, обратите внимание, "Основы теории измерений", изложение шло на абстрактно-математическом уровне, без привязки к какой-либо конкретной области применения. В этой статье упор был сделан на "гомоморфизмах эмпирических систем с отношениями в числовые" (в эти математические термины здесь вдаваться нет необходимости), и математическая сложность возросла по сравнению с работами С.С. Стивенса.

Уже в одной из первых отечественных статей по РТИ (конец 1960-х годов) было установлено, что баллы, присваиваемые экспертами при оценке объектов экспертизы, как правило, измерены в порядковой шкале. Отечественные работы, появившиеся в начале 1970-х годов, привели к существенному расширению области использования РТИ. Ее применяли к педагогической квалиметрии (измерению качества знаний учащихся), в системных исследованиях, в различных задачах теории экспертных оценок, для агрегирования показателей качества продукции, в социологических исследованиях, и др.

В качестве двух основных проблем РТИ наряду с установлением типа шкалы был выдвинут поиск алгоритмов анализа данных, результат работы которых не меняется при любом допустимом преобразовании шкалы (т.е. является инвариантным относительно этого преобразования).

Основные шкалы измерения. В соответствии с РТИ при математическом моделировании реального явления или процесса следует прежде всего установить, в каких типах шкал измерены те или иные переменные. Тип шкалы задает группу допустимых преобразований. Допустимые преобразования не меняют соотношений между объектами измерения. Например, при измерении длины переход от аршин к метрам не меняет соотношений между длинами рассматриваемых объектов - если первый объект длиннее второго, то это будет установлено и при измерении в аршинах, и при измерении в метрах.

Укажем основные виды шкал измерения и соответствующие группы допустимых преобразований. В шкале наименований (другое название - номинальной шкалы) допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются лишь как метки. Примерно так же, как при сдаче белья в прачечную, т.е. лишь для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Никому в здравом уме не придет в голову складывать или умножать номера телефонов, такие операции не имеют смысла. Сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Во многих случаях только это от них и требуется. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел.

В порядковой шкале числа используются для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго возрастающие преобразования.

Установление типа шкалы, т.е. задания группы допустимых преобразований шкалы измерения - дело специалистов соответствующей прикладной области. Так, оценки привлекательности профессий мы, выступая в качестве социологов, считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с нами, полагая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.

Оценки экспертов, как уже отмечалось, часто следует считать измеренными в порядковой шкале. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию (см. ниже).

Почему мнения экспертов естественно выражать именно в порядковой шкале? Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.

Используется много других известных примеров порядковых шкал. Так, например, в минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону). Номера домов также измерены в порядковой шкале. При оценке качества продукции и услуг, в т.н. квалиметрии (буквальный перевод: измерение качества) популярны порядковые шкалы. А именно, единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов.

При оценке экологических воздействий первая оценка - обычно порядковая: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье. Порядковая шкала используется и в иных областях.

Порядковая шкала и шкала наименований - основные шкалы качественных признаков . Поэтому во многих конкретных областях результаты качественного анализа можно рассматривать как измерения по этим шкалам.

Шкалы количественных признаков - это шкалы интервалов, отношений, разностей, абсолютная . По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: С 0 = 5/9 (Ф 0 - 32), где С 0 - температура по шкале Цельсия, а Ф 0 - температура по шкале Фаренгейта.

Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений. В них есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена.

Время измеряется по шкале разностей , если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. Естественного начала отсчета указать на современном уровне знаний нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии Господь Иисус Христос родился в 1054 г. н.э. (по принятому ныне летоисчислению) в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).

Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру следует считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием).

Инвариантные алгоритмы и средние величины. Основное требование к алгоритмам анализа данных формулируется в РТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных . Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы.

Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) - в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т.е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т.е. когда они инвариантны относительно допустимого преобразования шкалы.

В качестве примера рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Пусть Y1, Y2,...,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,...,Zn - второму (другому варианту такого развития).

Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям. А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Обобщением нескольких из перечисленных является среднее по Колмогорову. Для чисел X1, X2,...,Xn среднее по Колмогорову вычисляется по формуле

G{(F(X1)+F(X2)+...F(Xn))/n},

где F - строго монотонная функция, G - функция, обратная к F . Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x , то среднее по Колмогорову - это среднее арифметическое, если F(x) = ln x , то среднее геометрическое, если F(x) = 1/x , то среднее гармоническое, если F(x) = x 2 , то среднее квадратическое, и т.д. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову.

Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,...Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,...Xn , и не больше, чем максимальное из этих чисел. Среднее по Колмогорову - частный случай среднего по Коши. Медиана и мода, хотя и не являются средними по Колмогорову, но тоже - средние по Коши.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в РТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn). (1)

Согласно РТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство

f(g(Y1), g(Y2),..., g(Yn)) < f (g(Z1), g(Z2),..., g(Zn)), (2)

т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Yn и Z1, Z2,...,Zn и, напомним, любого допустимого преобразования g . Согласно РТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой А.И.Орловым в 1970-х годах, удается описать вид допустимых средних в основных шкалах. В шкале наименований в качестве среднего годится только мода. Из всех средних по Коши в порядковой шкале в качестве средних можно использовать только члены вариационного ряда (порядковые статистики), в частности, медиану (при нечетном объеме выборки. При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану), но не среднее арифметическое, среднее геометрическое и т.д. В шкале интервалов из всех средних по Колмогорову можно применять только среднее арифметическое. В шкале отношений из всех средних по Колмогорову устойчивыми относительно сравнения являются только степенные средние и среднее геометрическое.

Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1+X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1 = 6, Z2 = 8. Тогда f(Y1, Y2) = 6 , что меньше, чем f(Z1, Z2) = 7 . Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Таких преобразований много. Например, можно положить g (x ) = x при x , не превосходящих 8, и g (x ) = 99(x -8)/3 + 8 для х , больших 8. Тогда f(g(Y1), g(Y2)) = 50 , что больше, чем f(g(Z1), g(Z2)) = 7 . Как видим, в результате допустимого, т.е. строго возрастающего преобразования шкалы упорядоченность средних изменилась.

Приведенные результаты о средних величинах широко применяются, причем не только в теории экспертных оценок или социологии, но и, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение РТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).

Методы средних баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п., а затем рассчитывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин, как мы знаем, очень много разных видов. Обычно применяют среднее арифметическое. Уже более 30 лет известно, что такой способ некорректен , поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности . Поэтому целесообразно использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов . Такая рекомендация находится в согласии с концепцией устойчивости, рекомендующей использовать различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.

Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода. По заданию руководства фирмы анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы. Они были обозначены следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, назначенным Правлением фирмы. В приведенной ниже табл.1 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с представлением экспертов о целесообразности включения проекта в стратегический план фирмы. При этом эксперт присваивает ранг 1 самому лучшему проекту, который обязательно надо реализовать. Ранг 2 получает от эксперта второй по привлекательности проект,..., наконец, ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь). Анализируя результаты работы экспертов (т.е. табл.1), члены Правления фирмы были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные, приведенные в табл.1, следует подвергнуть более тщательному математическому анализу.

Таблица 1.

Ранги 8 проектов по степени привлекательности для включения в план стратегического развития фирмы

№ эксперта

Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.

Метод средних арифметических рангов. Сначала был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. табл.1). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект.

Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл.2 ниже. Итак, ранжировка по суммам рангов (или, что то же самое, по средним арифметическим рангам) имеет вид:

Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К. (3)

Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку проекты Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (3) имеет одну связь.

Таблица 2.

Результаты расчетов по методу средних арифметических и методу медиан для данных, приведенных в табл.1.

Сумма рангов

Среднее арифметическое рангов

Итоговый ранг по среднему арифметическому

Медианы рангов

Итоговый ранг по медианам

Метод медиан рангов. Значит, итог расчетов - ранжировка (3), и на ее основе предстоит принимать решение? Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан. Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать - "в порядке возрастания", но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин "неубывание"). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.

Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке табл.2. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид:

Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б. (4)

Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (4) имеет одну связь.

Сравнение ранжировок по методу средних арифметических и методу медиан. Сравнение ранжировок (3) и (4) показывает их близость (похожесть). Можно принять, что проекты М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей экспертных оценок в одном методе признаны равноценными проекты Л и Сол (ранжировка (3)), а в другом - проекты М-К и Л (ранжировка (4)). Существенным является только расхождение, касающееся упорядочения проектов К и Г-Б: в ранжировке (3) Г-Б < К, а в ранжировке (4), наоборот, К < Г-Б. Однако эти проекты - наименее привлекательные из восьми рассматриваемых, и при выборе наиболее привлекательных проектов для дальнейшего обсуждения и использования это расхождение не существенно.

Рассмотренный пример демонстрирует сходство и различие ранжировок, полученных по методу средних арифметических рангов и по методу медиан, а также пользу от их совместного применения.

3.4.6. Метод согласования кластеризованных ранжировок

Проблема состоит в выделении общего нестрогого порядка из набора кластеризованных ранжировок (на статистическом языке - ранжировок со связями). Этот набор может отражать мнения нескольких экспертов или быть получен при обработке мнений экспертов различными методами. Предлагается метод согласования кластеризованных ранжировок, позволяющий «загнать» противоречия внутрь специальным образом построенных кластеров (групп), в то время как упорядочение кластеров соответствует всем исходным упорядочениям. В различных прикладных областях возникает необходимость анализа нескольких кластеризованных ранжировок объектов. К таким областям относятся прежде всего инженерный бизнес, менеджмент, экономика, социология, экология, прогнозирование, научные и технические исследования и т.д., особенно те их разделы, что связаны с экспертными оценками (см., например, ). В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Кластеризованные ранжировки могут быть получены как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества. Описанный ниже метод был разработан в связи с проблемами химической безопасности биосферы и экологического страхования.

Рассмотрим метод построения кластеризованной ранжировки, согласованной (в раскрытом ниже смысле) со всеми рассматриваемыми кластеризованными ранжировками. При этом противоречия между отдельными исходными ранжировками оказываются заключенными внутри кластеров согласованной ранжировки. В результате упорядоченность кластеров отражает общее мнение экспертов, точнее, то общее, что содержится в исходных ранжировках.

В кластеры заключены объекты, по поводу которых некоторые из исходных ранжировок противоречат друг другу. Для их упорядочения необходимо провести новые исследования. Эти исследования могут быть как формально-математическими (например, вычисление медианы Кемени, упорядочения по средним рангам или по медианам и т.п.), так и требовать привлечения новой информации из соответствующей прикладной области, возможно, проведения дополнительных научных или прикладных работ.

Введем необходимые понятия, затем сформулируем алгоритм согласования кластеризованных ранжировок в общем виде и рассмотрим его свойства.

Пусть имеется конечное число объектов, которые мы для простоты изложения будем изображать натуральными числами 1,2,3,...,k и называть «носителем». Под кластеризованной ранжировкой, определенной на заданном носителе, понимаем следующую математическую конструкцию . Пусть объекты разбиты на группы, которые будем называть кластерами. В кластере может быть и один элемент. Входящие в один кластер объекты будем заключать в фигурные скобки. Например, объекты 1,2,3,...,10 могут быть разбиты на 7 кластеров: {1}, {2,3}, {4}, {5,6,7}, {8}, {9}, {10}. В этом разбиении один кластер {5,6,7} содержит три элемента, другой - {2,3} - два, остальные пять - по одному элементу. Кластеры не имеют общих элементов, а объединение их (как множеств) есть все рассматриваемое множество объектов.

Вторая составляющая кластеризованной ранжировки - это строгий линейный порядок между кластерами . Задано, какой из них первый, какой второй, и т.д. Будем изображать упорядоченность с помощью знака < . При этом кластеры, состоящие из одного элемента, будем для простоты изображать без фигурных скобок. Тогда кластеризованную ранжировку на основе введенных выше кластеров можно изобразить так: А = [ 1 < {2,3} < 4 < {5,6,7} < 8 < 9 < 10 ]. Конкретные кластеризованные ранжировки будем заключать в квадратные скобки. Если для простоты речи термин "кластер" применять только к кластеру не менее чем из 2-х элементов, то можно сказать, что в кластеризованную ранжировку А входят два кластера {2,3} и {5,6,7} и 5 отдельных элементов.

Введенная описанным образом кластеризованная ранжировка является бинарным отношением на множестве {1,2,3,...,10}. Его структура такова. Задано отношение эквивалентности с 7-ю классами эквивалентности, а именно, {2,3}, {5,6,7}, а остальные состоят из оставшихся 5 отдельных элементов. Затем введен строгий линейный порядок между классами эквивалентности. Введенный математический объект известен в литературе как "ранжировка со связями" (М. Холлендер, Д.Вулф), "упорядочение" (Дж. Кемени, Дж. Снелл), "квазисерия" (Б.Г.Миркин), "совершенный квазипорядок" (Ю.А. Шрейдер ). Учитывая разнобой в терминологии, мы ввели термин "кластеризованная ранжировка", поскольку в нем явным образом названы основные элементы изучаемого математического объекта - кластеры, рассматриваемые на этапе согласования ранжировок как классы эквивалентности, и ранжировка - строгий совершенный порядок между ними (в терминологии ).

Следующее важное понятие - противоречивость . Оно определяется для четверки - две кластеризованные ранжировки на одном и том же носителе и два различных объекта - элементы того же носителя. При этом два элемента из одного кластера будем связывать символом равенства = , как эквивалентные.

Пусть А и В - две кластеризованные ранжировки. Пару объектов (a,b) назовем «противоречивой»относительно А и В, если эти два элемента по-разному упорядочены в А и В, т.е. a < b в А и a > b в В (первый вариант противоречивости) либо a >b в А и a < b в В (второй вариант противоречивости). Отметим, что в соответствии с этим определением пара объектов (a,b), эквивалентная хотя бы в одной кластеризованной ранжировке, не может быть противоречивой: a = b не образует "противоречия" ни с a < b , ни с a > b.

В качестве примера рассмотрим две кластеризованные ранжировки В = [{1,2} < { 3,4, 5} < 6 < 7 < 9 < {8, 10}], C = . Совокупность противоречивых пар объектов для двух кластеризованных ранжировок А и В назовем «ядром противоречий»и обозначим S(A,B). Для рассмотренных выше в качестве примеров трех кластеризованных ранжировок А, В и С, определенных на одном и том же носителе {1, 2, 3,..., 10}, имеем S(A,B) = [ (8, 9)], S(A,C) = [ (1, 3), (2,4) ] , S(B,C) = [ (1, 3), (2, 3), (2, 4), (5, 6), (8,9) ] . Как при ручном, так и при программном нахождении ядра можно в поисках противоречивых пар просматривать пары (1,2), (1,3), (1.,4), ...., (1, k), затем (2,3), (2,4), ..., (2, k), потом (3,4), ..., (3, k), и т.д., вплоть до (k-1, k).

Пользуясь понятиями дискретной математики, «ядро противоречий» можно изобразить графом с вершинами в точках носителя. При этом противоречивые пары задают ребра этого графа. Граф для S(A,B) имеет только одно ребро (одна связная компонента более чем из одной точки), для S(A,C) - 2 ребра (две связные компоненты более чем из одной точки), для S(B,C) - 5 ребер (три связные компоненты более чем из одной точки {1, 2 , 3, 4}, {5, 6} и {8, 9}).

Каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать матрицей || x(a, b) || из 0 и 1 порядка k x k . При этом x(a, b) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x(b, a) = 0, а во втором x(b, a) x(a, b) и x(b, a) равно 1. Из определения противоречивости пары (a, b) вытекает, что для нахождения всех таких пар достаточно поэлементно перемножить две матрицы ||x(a,b)|| и ||y(a, b)||, соответствующие двум кластеризованным ранжировкам, и отобрать те и только те пары, для которых x(a,b)y(a,b)=x(b,a)y(b,a)=0.

Предлагаемый алгоритм согласования некоторого числа кластеризованных ранжировок состоят из трех этапов. На первом выделяются противоречивые пары объектов во всех парах кластеризованных ранжировок. На втором формируются кластеры итоговой кластеризованной ранжировки (т.е. классы эквивалентности - связные компоненты графов , соответствующих объединению попарных ядер противоречий). На третьем этапе эти кластеры (классы эквивалентности) упорядочиваются . Для установления порядка между кластерами произвольно выбирается один объект из первого кластера и второй - из второго, порядок между кластерами устанавливается такой же, какой имеет быть между выбранными объектами в любой из рассматриваемых кластеризованных ранжировок. Корректность подобного упорядочивания, т.е. его независимость от выбора той или иной пары объектов, вытекает из соответствующих теорем, доказанных в статье . Два объекта из разных кластеров согласующей кластеризованной ранжировки могут оказаться эквивалентными в одной из исходных кластеризованных ранжировок (т.е. находиться в одном кластере). В таком случае надо рассмотреть упорядоченность этих объектов в какой-либо другой из исходных кластеризованных ранжировок. Если же во всех исходных кластеризованных ранжировках два рассматриваемых объекта находились в одном кластере, то естественно считать (и это является уточнением к этапу 3 алгоритма), что они находятся в одном кластере и в согласующей кластеризованной ранжировке.

Результат согласования кластеризованных ранжировок А, В, С,... обозначим f(А, В, С,...). Тогда f(А, В) = , f(А, С) = [{1,3}<{2, 4}<5<6<7<8<9<10], f(В, С) = [{1,2,3,4}<{5,6}<7<{8,9}<10], f(А, В, С) = f(В, С) = [{1,2,3,4} <{5,6}<7<{8, 9}<10]. В случае f(А, В) дополнительного изучения с целью упорядочения требуют только объекты 8 и 9. В случае f(В, С) объекты 1,2,3,4 объединились в один кластер, т.е. кластеризованные ранжировки оказались настолько противоречивыми, что процедура согласования не позволила провести достаточно полную декомпозицию задачи нахождения итогового мнения экспертов.

Рассмотрим некоторые свойства алгоритмов согласования. Пусть D = f(А, В, C,...). Если aядро противоречий для набора кластеризованных ранжировок является объединением таких ядер для всех пар рассматриваемых ранжировок . Построение согласующих кластеризованных ранжировок нацелено на выделение общего упорядочения в исходных кластеризованных ранжировках. Однако при этом некоторые общие свойства исходных кластеризованных ранжировок могут теряться. Так, при согласовании ранжировок В и С, рассмотренных выше, противоречия в упорядочении элементов 1 и 2 не было - в ранжировке В эти объекты входили в один кластер, т.е. 1 = 2, в то время как 1<2 в кластеризованной ранжировке С. Значит, при их отдельном рассмотрении можно принять упорядочение 1 < 2. Однако в f(В,C) они попали в один кластер, т.е. возможность их упорядочения исчезла. Это связано с поведением объекта 3, который "перескочил" в С на первое место и "увлек с собой в противоречие" пару (1, 2), образовав противоречивые пары и с 1, и с 2. Другими словами, связная компонента графа, соответствующего ядру противоречий, сама по себе не всегда является полным графом. Недостающие ребра при этом соответствуют парам типа (1, 2), которые сами по себе не являются противоречивыми, но "увлекаются в противоречие" другими парами.

Необходимость согласования кластеризованных ранжировок возникает, в частности, при разработке методики применения экспертных оценок в задачах экологического страхования и химической безопасности биосферы. Как уже говорилось, популярным является метод упорядочения по средним рангам, в котором итоговая ранжировка строится на основе средних арифметических рангов, выставленных отдельными экспертами . Однако из теории измерений известно , что более обоснованным является использование не средних арифметических, а медиан. Вместе с тем метод средних рангов весьма известен и широко применяется, так что просто отбросить его нецелесообразно. Поэтому было принято решение об одновременном применении обеих методов. Реализация этого решения потребовала разработки методики согласования двух указанных кластеризованных ранжировок.

Рассматриваемый метод согласования кластеризованных ранжировок построен в соответствии с методологией теории устойчивости , согласно которой результат обработки данных, инвариантный относительно метода обработки, соответствует реальности, а результат расчетов, зависящий от метода обработки, отражает субъективизм исследователя, а не объективные соотношения.

3.4.7. Математические методы анализа экспертных оценок

При анализе мнений экспертов можно применять самые разнообразные статистические методы, описывать их - значит описывать всю прикладную статистику. Тем не менее можно выделить основные широко используемые в настоящее время методы математической обработки экспертных оценок - это проверка согласованности мнений экспертов (или классификация экспертов, если нет согласованности) и усреднение мнений экспертов внутри согласованной группы.

Поскольку ответы экспертов во многих процедурах экспертного опроса - не числа, а такие объекты нечисловой природы, как градации качественных признаков, ранжировки, разбиения, результаты парных сравнений, нечеткие предпочтения и т.д., то для их анализа оказываются полезными методы статистики объектов нечисловой природы.

Почему ответы экспертов часто носят нечисловой характер? Наиболее общий ответ состоит в том, что люди не мыслят числами. В мышлении человека используются образы, слова, но не числа. Поэтому требовать от эксперта ответ в форме чисел - значит насиловать его разум. Даже в экономике предприниматели, принимая решения, лишь частично опираются на численные расчеты. Это видно из условного (т.е. определяемого произвольно принятыми соглашениями, обычно оформленными в виде инструкций) характера балансовой прибыли, амортизационных отчислений и других экономических показателей. Поэтому фраза типа "фирма стремится к максимизации прибыли" не может иметь строго определенного смысла. Достаточно спросить: "Максимизация прибыли - за какой период?" И сразу станет ясно, что степень оптимальности принимаемых решений зависит от горизонта планирования (на экономико-математическом уровне этот сюжет рассмотрен в монографии ).

Эксперт может сравнить два объекта, сказать, какой из двух лучше (метод парных сравнений), дать им оценки типа "хороший", "приемлемый", "плохой", упорядочить несколько объектов по привлекательности, но обычно не может ответить, во сколько раз или на сколько один объект лучше другого. Другими словами, ответы эксперта обычно измерены в порядковой шкале, или являются ранжировками, результатами парных сравнений и другими объектами нечисловой природы, но не числами. Распространенное заблуждение состоит в том, что ответы экспертов стараются рассматривать как числа, занимаются "оцифровкой" их мнений, приписывая этим мнениям численные значения - баллы, которые потом обрабатывают с помощью методов прикладной статистики как результаты обычных физико-технических измерений. В случае произвольности "оцифровки" выводы, полученные в результате обработки данных, могут не иметь отношения к реальности.

Проверка согласованности мнений экспертов и классификация экспертных мнений. Ясно, что мнения разных экспертов различаются. Важно понять, насколько велико это различие. Если мало - усреднение мнений экспертов позволит выделить то общее, что есть у всех экспертов, отбросив случайные отклонения в ту или иную сторону. Если велико - усреднение является чисто формальной процедурой. Так, если представить себе, что ответы экспертов равномерно покрывают поверхность бублика, то формальное усреднение укажет на центр дырки от бублика, а такого мнения не придерживается ни один эксперт. Из сказанного ясна важность проблемы проверки согласованности мнений экспертов.

Разработан ряд методов такой проверки. Статистические методы проверки согласованности зависят от математической природы ответов экспертов. Соответствующие статистические теории весьма трудны, если эти ответы - ранжировки или разбиения, и достаточно просты, если ответы - результаты независимых парных сравнений. Отсюда вытекает рекомендация по организации экспертного опроса: не старайтесь сразу получить от эксперта ранжировку или разбиение, ему трудно это сделать, да и имеющиеся математические методы не позволяют далеко продвинуться в анализе подобных данных. Например, рекомендуют проверять согласованность ранжировок с помощью коэффициента ранговой конкордации Кендалла-Смита. Но давайте вспомним, какая статистическая модель при этом используется. Проверяется нулевая гипотеза, согласно которой ранжировки независимы и равномерно распределены на множестве всех ранжировок. Если эта гипотеза принимается, то конечно, ни о какой согласованности мнений экспертов говорить нельзя. А если отклоняется? Тоже нельзя. Например, может быть два (или больше) центра, около которых группируются ответы экспертов. Нулевая гипотеза отклоняется. Но разве можно говорить о согласованности?

Эксперту гораздо легче на каждом шагу сравнивать только два объекта. Пусть он занимается парными сравнениями. Непараметрическая теория парных сравнений (теория люсианов) позволяет решать более сложные задачи, чем статистика ранжировок или разбиений. В частности, вместо гипотезы равномерного распределения можно рассматривать гипотезу однородности, т.е. вместо совпадения всех распределений с одним фиксированным (равномерным) можно проверять лишь совпадение распределений мнений экспертов между собой, что естественно трактовать как согласованность их мнений. Таким образом, удается избавиться от неестественного предположения равномерности.

При отсутствии согласованности экспертов естественно разбить их на группы сходных по мнению. Это можно сделать различными методами статистики объектов нечисловой природы, относящимися к кластер-анализу, предварительно введя метрику в пространство мнений экспертов. Идея американского математика Джона Кемени об аксиоматическом введении метрик (см. ниже) нашла многочисленных продолжателей. Однако методы кластер-анализа обычно являются эвристическими. В частности, невозможно с позиций статистической теории обосновать "законность" объединения двух кластеров в один. Имеется важное исключение - для независимых парных сравнений (люсианов) разработаны методы, позволяющие проверять возможность объединения кластеров как статистическую гипотезу . Это - еще один аргумент за то, чтобы рассматривать теорию люсианов как ядро математических методов экспертных оценок .

Нахождение итогового мнения комиссии экспертов. Пусть мнения комиссии экспертов или какой-то ее части признаны согласованными. Каково же итоговое (среднее, общее) мнение комиссии? Согласно идее Джона Кемени следует найти среднее мнение как решение оптимизационной задачи . А именно, надо минимизировать суммарное расстояние от кандидата в средние до мнений экспертов. Найденное таким способом среднее мнение называют "медианой Кемени".

Математическая сложность состоит в том, что мнения экспертов лежат в некотором пространстве объектов нечисловой природы. Общая теория подобного усреднения построена в ряде работ, в частности, показано, что в силу обобщения закона больших чисел среднее мнение при увеличении числа экспертов (чьи мнения независимы и одинаково распределены) приближается к некоторому пределу, который естественно назвать математическим ожиданием (случайного элемента, имеющего то же распределение, что и ответы экспертов).

В конкретных пространствах нечисловых мнений экспертов вычисление медианы Кемени может быть достаточно сложным делом. Кроме свойств пространства, велика роль конкретных метрик. Так, в пространстве ранжировок при использовании метрики, связанной с коэффициентом ранговой корреляции Кендалла, необходимо проводить достаточно сложные расчеты, в то время как применение показателя различия на основе коэффициента ранговой корреляции Спирмена приводит к упорядочению по средним рангам.

Бинарные отношения и расстояние Кемени. Как известно, бинарное отношение А на конечном множестве Q = {q 1 , q 2 ,..., q k } - это подмножество декартова квадрата Q 2 = { (q m , q n), m,n = 1,2,…,k } . При этом пара (q m , q n) входит в А тогда и только тогда, когда между q m и q n имеется рассматриваемое отношение. Каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать матрицей || x(a, b) || из 0 и 1 порядка k x k . При этом x(a, b) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x(b, a) = 0, а во втором x(b, a) = 1. При этом хотя бы одно из чисел x(a, b) и x(b, a) равно 1.

Как использовать связь между ранжировками и матрицами? Например, из определения противоречивости пары (a, b) (см. выше, пункт о теории измерений) вытекает, что для нахождения всех таких пар можно воспользоваться матрицами, соответствующими ранжировкам. Достаточно поэлементно перемножить две матрицы ||x(a,b) || и ||y(a, b) ||, соответствующие двум кластеризованным ранжировкам, и отобрать те и только те пары, для которых x(a,b)y(a,b)=x(b,a)y(b,a)= 0.

В экспертных методах используют, в частности, такие бинарные отношения, как ранжировки (упорядочения, или разбиения на группы, между которыми имеется строгий порядок), отношения эквивалентности, толерантности (отношения сходства). Как следует из сказанного выше, каждое бинарное отношение А можно описать матрицей || a(i,j) || из 0 и 1, причем a(i,j) = 1 тогда и только тогда, когда q i и q j находятся в отношении А , и a(i,j) = 0 в противном случае.

Определение. Расстоянием Кемени между бинарными отношениями А и В, описываемыми матрицами || a(i,j) || и || b(i,j) || соответственно, называется число D (A, B) = ∑ │a(i,j) - b(i,j) │, где суммирование производится по всем i,j от 1 до k , т.е. расстояние Кемени между бинарными отношениями равно сумме модулей разностей элементов, стоящих на одних и тех же местах в соответствующих им матрицах.

Легко видеть, что расстояние Кемени - это число несовпадающих элементов в матрицах || a(i,j) || и || b(i,j) || .Расстояние Кемени основано на некоторой системе аксиом. Эта система аксиом и вывод из нее формулы для расстояния Кемени между упорядочениями содержится в книге , которая сыграла большую роль в развитии в нашей стране такого научного направления, как анализ нечисловой информации . В дальнейшем под влиянием Кемени были предложены различные системы аксиом для получения расстояний в тех или иных нужных для социально-экономических исследований пространствах, например, в пространствах множеств .

Медиана Кемени и законы больших чисел. С помощью расстояния Кемени находят итоговое мнение комиссии экспертов. Пусть А 1 , А 2 , А 3 ,…, А р - ответы р экспертов, представленные в виде бинарных отношений. Для их усреднения используют т.н. медиану Кемени Arg min ∑ D (A i ,A) , где Arg min - то или те значения А , при которых достигает минимума указанная сумма расстояний Кемени от ответов экспертов до текущей переменной А , по которой и проводится минимизация. Таким образом, ∑ D (A i ,A) = D (A 1 ,A) + D (A 2 ,A) + D (A 3 ,A) +…+ D (A р,A) . Кроме медианы Кемени, используют среднее по Кемени, в котором вместо D (A i ,A) стоит D 2 (A i ,A) . Медиана Кемени - частный случай определения эмпирического среднего в пространствах нечисловой природы. Для нее справедлив закон больших чисел, т.е. эмпирическое среднее приближается при росте числа составляющих (т.е. р - числа слагаемых в сумме), к теоретическому среднему: Arg min ∑ D (A i ,A) → Arg min М D (A 1 , A) . Здесь М - символ математического ожидания. Предполагается, что ответы р экспертов А 1 , А 2 , А 3 ,…, А р есть основания рассматривать как независимые одинаково распределенные случайные элементы (т.е. как случайную выборку) в соответствующем пространстве произвольной природы, например, в пространстве упорядочений или отношений эквивалентности. Систематически эмпирические и теоретические средние и соответствующие законы больших чисел изучены в ряде работ (см., например, ).

Законы больших чисел показывают, во-первых, что медиана Кемени обладает устойчивостью по отношению к незначительному изменению состава экспертной комиссии; во-вторых, при увеличении числа экспертов она приближается к некоторому пределу. Его естественно рассматривать как истинное мнение экспертов, от которого каждый из них несколько отклонялся по случайным причинам. Рассматриваемый здесь закон больших чисел является обобщением известного в статистике "классического" закона больших чисел. Он основан на иной математической базе - теории оптимизации, в то время как "классический" закон больших чисел использует суммирование. Упорядочения и другие бинарные отношения нельзя складывать, поэтому приходится применять иную математику. Вычисление медианы Кемени - задача целочисленного программирования. В частности, для ее нахождения используется различные алгоритмы дискретной математики, в частности, основанные на методе ветвей и границ. Применяют также алгоритмы, основанные на идее случайного поиска, поскольку для каждого бинарного отношения нетрудно найти множество его соседей.

Таблица 3.

Матрица попарных расстояний

Рассмотрим пример вычисления медианы Кемени. Пусть дана квадратная матрица (порядка 9) попарных расстояний для множества бинарных отношений из 9 элементов А 1 , А 2 , А 3 ,..., А 9 (см. табл. 3). Требуется найти в этом множестве медиану для множества из 5 элементов {А 2 , А 4 , А 5 , А 8 , А 9 }.

В соответствии с определением медианы Кемени следует ввести в рассмотрение функцию

С (А ) = ∑ D(A i ,A) = D(A 2 ,A)+D(A 4 ,A)+D(A 5 ,A)+D(A 8 ,A)+D(A 9 ,A),

рассчитать ее значения для всех А 1 , А 2 , А 3 ,..., А 9 и выбрать наименьшее. Проведем расчеты: С(А 1) = 24, С(А 2) = 13, С(А 3) = 21, С(А 4) = 27, С(А 5) = 16, С(А 6) = 23, С(А 7) = 15, С(А 8) = 25, С(А 9) = 25. Из всех вычисленных сумм наименьшая равна 13, и достигается она при А = А 2 , следовательно, медиана Кемени - это А 2 .

Экспертные методы успешно применяются в различных областях менеджмента при решении конкретных задач .

Литература

1. Орлов А.И. Экспертные оценки // Заводская лаборатория. 1996. Т.62. № 1. С.54-60.
2. Горский В.Г., Орлов А.И., Гриценко А.А. Метод согласования кластеризованных ранжировок // Автоматика и телемеханика. 2000. №3. С. 159-167.
3. Шрейдер Ю.А. Равенство, сходство, порядок. М.: Наука, 1971.
4. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.
5. Менеджмент. Учебное пособие. / Под ред. Ж.В. Прокофьевой. - М.: Знание, 2000. - 288 с.
6. Орлов А.И. Современная прикладная статистика // Заводская лаборатория. 1998. Т. 64. № 3. С.52-60.
7. Кемени Дж., Снелл Дж. Кибернетическое моделирование: Некоторые приложения. - М.: Советское радио, 1972. - 192 с.
8. Орлов А.И. Эконометрика. Учебник. - М.: Изд-во "Экзамен", 2003. – 576 с.
9. Орлов А.И., Федосеев В.Н. Менеджмент в техносфере. – М.: Академия, 2003. -404 с.

Контрольные вопросы и задачи

1.Почему необходимо применение экспертных оценок при решении технических, организационных, экономических, экологических и иных проблем?
2. Какие стадии экспертного исследования выделяет менеджер - организатор такого исследования?
3. По каким основаниям классифицируют различные варианты организации экспертных исследований?
4. Какова роль диссидентов в различных видах экспертиз?
5. Какой вид могут иметь ответы экспертов?
6. Чем метод средних арифметических рангов отличает от метода медиан рангов?
7. Почему необходимо согласование кластеризованных ранжировок и как оно проводится?
8. В чем состоит проблема согласованности ответов экспертов?
9. Как бинарные отношения используются в экспертизах?
10. Как бинарные отношения описываются матрицами из 0 и 1?
11. Что такое расстояние Кемени и медиана Кемени?
12. Чем закон больших чисел для медианы Кемени отличается от "классического" закона больших чисел, известного в статистике?
13. В табл. 4 приведены упорядочения 7 инвестиционных проектов, представленные 7 экспертами.

Таблица 4.

Упорядочения проектов экспертами

Эксперты

Упорядочения

1 < {2,3} < 4 < 5 < {6,7}

{1,3} < 4 < 2< 5< 7 < 6

1 < 4 < 2 < 3 < 6 < 5 < 7

1 < {2, 4} < 3 < 5 < 7 <6

2 < 3 < 4 < 5 <1 <6 <7

1 < 3 < 2 < 5 < 6 < 7 < 4

1 < 5 < 3 < 4 < 2 < 6 < 7

а) итоговое упорядочение по средним арифметическим рангам;

б) итоговое упорядочение по медианам рангов;

в) кластеризованную ранжировку, согласующую эти два упорядочения.

14. Выпишите матрицу из 0 и 1, соответствующую бинарному отношению (кластеризованной ранжировке) 5 < {1, 3} < 4 < 2 < {6, 7}.

15. Найдите расстояние Кемени между бинарными отношениями - упорядочениями А = и B = .

16. Дана квадратная матрица (порядка 9) попарных расстояний (мер различия) для множества бинарных отношений из 9 элементов А 1 , А 2 , А 3 ,..., А 9 (табл.5). Найдите в этом множестве медиану для множества из 5 элементов {А 2 , А 3 , А 5 , А 6 , А 9 }.

Таблица 5.

Попарные расстояния между бинарными отношениями

Темы докладов и рефератов

1. Роль экспертных методов в менеджменте.
2. Организация различных видов экспертных исследований.
3. Сравнение очных и заочных вариантов работы экспертов.
4. Методы средних баллов.
5. Согласование кластеризованных ранжировок.
6. Методы теории люсианов в экспертных оценках .
7. Классификация мнений экспертов и проверка согласованности.
8. Использование люсианов в теории и практике экспертных оценок.
9. Формирование итогового мнения комиссии экспертов.
10. Расстояние по Кемени и медиана Кемени в экспертных оценках.
11. Законы больших чисел в пространствах нечисловой природы.

Предыдущая

Задачи прогнозирова-ния, решаемые с помощью методов экспертных оценок, включают два формально не связанных между собой элемента: определение возмож-ных вариантов развития объекта прогнозирования и их оценку. Анализ экспертных методов показывает целесообразность применения «мозговых атак» для определения возможных вариантов развития. Их использование позволяет получить продуктивные результаты за короткий период времени и вовлечь всех экспертов в активный творческий процесс.

Методы «мозговых атак» можно классифицировать по признаку наличия или отсутствия обратной связи между руководителем и участниками «мозговой атаки» в процессе решения некоторой проб-лемной ситуации. Наличие обратной связи позволяет концентриро-вать внимание участников только на вариантах, полезных по тем или иным критериям для решения проблемной ситуации. Однако, ис-кусственно вводя ограничения, мы лишаемся возможности увидеть все многообразие подходов, и тем самым появляется вероятность пропустить оригинальные мысли, имеющие потенциальную, но не осознаваемую в настоящий момент ценность. Отсутствие обратной связи, т.е. максимальная стимуляция высказываний, предполагает проведение сложной и большой по объему работы на этапе их оценки. Создавшаяся ситуация потребовала разработать метод «мозговой атаки», способный качественно и достаточно быстро проводить оцен-ку вариантов, не ограничивая при этом их числа.

Сущность этого метода состоит в актуализации творческого потенциала специалистов при «мозговой атаке» проблемной ситуации, реализующей вначале генерацию идей и последующее деструирование (разрушение, критику) этих идей с формулированием контридей. Работа с методом «мозговой атаки» предполагает реализацию сле-дующих шести этапов.

Первый этап - формирование группы участников «мозговой атаки» (по численности и составу). Оптимальная числен-ность группы участников находится эмпирическим путем: наиболее продуктивными признаны группы в 10-15 человек. Состав группы участников предполагает их целенаправленный подбор: 1) из лиц примерно одного ранга, если участники знают друг друга; 2) из лиц разного ранга, если участники не знакомы друг с другом (в этом случае следует нивелировать каждого из участников при-своением ему номера с последующим обращением к участнику по но-меру). Что же касается необходимости специализации участника в области проблемной ситуации, то это условие не является обя-зательным для всех членов группы. Более того, весьма желательно, чтобы в группе были специалисты других областей знания, обладаю-щие высоким уровнем общей эрудиции и понимающие смысл проблем-ной ситуации.

Второй этап - составление проблемной записки участника мозговой атаки. Она составляется группой анализа проб-лемной ситуации и включает описание этого метода и описание проб-лемной ситуации. Данное описание содержит: принцип, на котором основан метод; условия, обеспечивающие наибольшую эффективность «мозговой атаки», авторство результатов атаки; основные правила проведения атаки. Описание проблемной ситуации содержит: причи-ны возникновения проблемной ситуации; анализ причин и возможные последствия возникшей проблемной ситуации (целесообразно гипер-болизировать последствия, с тем чтобы острее ощущалась необходи-мость разрешения противоречий); анализ мирового опыта разрешения подобной проблемной ситуации (если он имеется); классификацию (систематизацию) существующих путей разрешения проблемной ситуа-ции, формулировку проблемной ситуации в виде центрального вопро-са с иерархией подвопросов.

Третий этап - генерация идей. Она начинается с того, что ведущий раскрывает содержание проблемной записки. Предсказывая описание метода, ведущий концентрирует внимание участников на правилах проведения мозговой атаки: 1) высказывания участников должны быть четкими и сжатыми; 2) скептические замечания и критика предыдущих выступлений не допускаются; 3) каждый из участников имеет право выступать много раз, но не подряд; 4) не разрешается зачитывать подряд список идей, который может быть подготовлен участниками заранее. Пересказывая содер-жание проблемной ситуации, ведущий концентрирует внимание участ-ников на основном вопросе. Свое выступление ведущий должен стро-ить таким образом, чтобы пробудить психологическую восприимчи-вость участников, заставить их почувствовать потребность сде-лать то, о чем он их просит. Желаемый отклик участников - воля к целеустремленности мышления, направленного на решение проблем-ной ситуации.

Активная деятельность ведущего предполагается только в на-чале «мозговой атаки». После того как участники достаточно воз-будились, процесс выдвижения новых идей идет спонтанно. Ведущий в этом процессе играет пассивную роль, регламентируя участников согласно правилам проведения атаки. Следует помнить, что, чем разнообразнее и больше количество высказываний, тем шире и глуб-же охватывается рассматриваемый вопрос и тем больше вероятность появления ценных высказываний. Учитывая изложенное обстоятельство, ведущий при проведении атаки должен руководствоваться следующими правилами:

Сосредоточивать внимание участников на проблемной ситуации, задавая рамки специфическими её требованиями и терминологической строгостью высказываемых идей;

Не объявлять ложной, не осуждать и не прекращать исследова-ние ни одной идеи, т.е. рассматривать любую идею независимо от её кажущейся уместности или осуществимости;

Приветствовать усовершенствование или комбинацию идей, пре-доставляя слово в первую очередь тому, кто хочет высказаться в связи с предыдущим выступлением;

Оказывать поддержку и поощрение участникам, столь необходи-мые для того, чтобы освободить их от скованности;

Создавать непринужденность обстановки, способствуя, таким образом, активизации участников атаки.

Четвертый этап - систематизация идей, выска-занных на этапе генерации. Систематизацию идей группа анализа проблемной ситуации осуществляет в такой последовательности: составляется номенклатурный перечень всех высказанных идей; каждая из идей формулируется в общеупотребительных терминах; определяются дублирующие и дополняющие идеи; дублирующие и (или) дополняющие идеи объединяются и формулируются в виде одной комп-лексной идеи; выделяются признаки, по которым идеи могут быть объединены; идеи объединяются в группы согласно выделенным при-знакам; составляется перечень идей по группам (в каждой группе идеи записываются в порядке их общности: от более общих к част-ным, дополняющим или развивающим более общие идеи).

Пятый этап - деструирование (разрушение, критика) систематизированных идей (специализированная процедура оценки идей на практическую реализуемость в процессе мозговой атаки, когда каж-дая из них подвергается всесторонней критике со стороны участ-ников мозговой атаки).

Основное правило этапа деструирования - рассматривать каждую из систематизированных идей только с точки зрения препятствий на пути к её осуществлению, т.е. участники атаки выдвигают дово-ды, опровергающие систематизированную идею. Особенно ценным яв-ляется то обстоятельство, что в процессе деструирования может быть генерирована контридея, формулирующая имеющиеся ограничения и выдвигающая прещщложение о возможности снятия этих ограничений.

Группа участников мозговой атаки этого этапа состоит из высококвалифицированных специалистов в обсуждаемой области, числен-ность её достигает 20-25 человек, а продолжительность - 1,5 часа. Процесс деструирования продолжается до тех пор, пока каждая из систематизированных идей перечня не подвергнется критике. Высказанные критические замечания и контридеи записываются на магни-тофон.

Шестой этап - оценка критических замечаний и составление списка практически применимых идей. Реализацию этапа осуществляет группа анализа проблемной ситуации:

1. Составляется перечень всех критических замечаний, полученных на этапе деструирования. При необходимости критические замечания уточняются, отбрасываются дублирующие.

2. Составляется сводная таблица этапов систематизации и деструирования идей, а также список показателей практической применимости идей (эти показатели в каждом конкретном случае специфичны и зависят от конкретной проблемной ситуации). Первая графа таблицы - результаты этапа систематизации идей; вторая - критические замечания, опровергающие идеи; третья - показатели практической применимости идей; четвертая - контридеи, высказанные на этапе деструирования.

3. Оценивается каждое критическое замечание и контридея:

а) вычеркивается из таблицы, если опровергается хотя бы одним показателем практической применимости;

б) не вычеркивается, если оно не опровергается ни одним показателем.

4. Составляется окончательный список идей; переносятся в список только те идеи, которые не опровергнуты критическими замечаниями и остались в таблице, а также контридеи.

Метод коллективной генерации идей апробирован на практике и позволяет находить групповое решение при определении возможных вариантов развития объекта прогнозирования, исключая путь комп-ромиссов, когда единое мнение нельзя считать результатом беспри-страстного анализа проблемы.

Дельфийский метод . В последние два де-сятилетия созданы отдельные методики, позволяющие в определенной мере организовать статистическую обработку мнений экспертов-специалистов и достигнуть более или менее согласованного их мне-ния. Метод «Дельфи» - один из наиболее распространенных методов экспертной оценки будущего, т.е. экспертного прогнозирования. Этот метод разработан американской исследовательской корпорацией РЭНД и служит для определения и оценки вероятности наступления тех или иных событий.

Метод «Дельфи» построен на следующем принципе: в неточных науках мнения экспертов и субъективные суждения в силу необходимости должны заменить точные законы причинности, отражаемые естественными науками.

Метод «Дельфи» позволяет обобщать мнения отдельных экспер-тов в согласованное групповое мнение. Ему присущи все недостат-ки прогнозов, построенных на основе экспертных оценок. Однако проводимые корпорацией РЭНД работы по совершенствованию этой системы значительно повысили гибкость, быстроту и точность про-гнозирования.

Метод «Дельфи» характеризуется тремя особенностями, которые отличают его от обычных методов группового взаимодействия экс-пертов. К таким особенностям относятся: а) анонимность экспер-тов; б) использование результатов предыдущего тура опроса; в) статистическая характеристика группового ответа.

Анонимность заключается в том, что в ходе проведения про-цедуры экспертной оценки прогнозируемого явления, объекта участ-ники экспертной группы неизвестны друг другу. При этом взаимо-действие членов группы при заполнении анкет, полностью устраня-ется. В результате такой постановки автор ответа может изменить свое мнение без публичного объявления об этом.

Использование результатов предыдущего тура опроса заключа-ется в следующем: поскольку групповое взаимодействие осуществля-ется непосредственно с помощью ответа на анкету, специалист или организация, проводящие исследования по методу «Дельфи», извле-кает из анкет только ту информацию, которая относится к данной проблеме. Специалист-прогнозист учитывает мнение экспертов «за» и «против» по каждой точке зрения. Основной результат функциони-рования этой системы состоит в том, чтобы предотвратить принятие группой своих собственных целей и задач. Эта система дает возмож-ность группе специалистов концентрировать свои усилия на перво-начальных задачах, а не предполагать каждый раз что-то новое.

Статистическая характеристика группового ответа заключается в том, что группа специалистов составляет прогноз, содержащий точку зрения только большинства экспертом, т.е. такую точку зре-ния, с которой могло бы согласиться большинство группы. Однако вряд ли может существовать какой-либо показатель степени разли-чия мнений, которые могли существовать у членов группы. Вместо этого в методе «Дельфи» используются статистические характерис-тики ответа, который включает мнение всей группы. Каждый ответ внутри группы учитывается при построении медианы, а величина разброса ответов характеризуется величиной интервала между квар-тилями. Иными словами, групповой ответ может быть представлен в виде медианы и двух квартилей, т.е. в виде такого числа, оцен-ки которого одной половиной членов группы были больше этого чис-ла, а другой половиной - меньше. Метод «Дельфи» дает возможность эффективно взаимодействовать членам жюри, хотя результаты этого взаимодействия и контролируются руководителем группы путем суммирования аргументов. Члены жюри изменяют свои оценки именно тогда, когда убедительны доводы их коллег, а противном случае они упорно придерживаются своих противоположных точек зрения.

Метод «Дельфи» осуществим и эффективен при получении преиму-ществ от участия группы в подготовке прогноза; в то же время этот метод сводит до минимума или устраняет большинство труднос-тей, связанных с работой комиссии, хотя он может потребовать больше времени, чем комиссия с личным общением членов, особенно если опрос производится по почте.

В развитии метода «Дельфи» применяется перекрестная коррекция. Будущее событие представляется как огромное множество свя-занных и переходящих друг в друга путей развития.

Представив прогноз научно-технических сдвигов как Д 1 , Д 2 , …, Д n , а соответствующие им вероятности как Р 1 , Р 2 , …, Р n и по-лагая Р 1 =100% , находят изменения значений Р 2 , …, Р i , …, Р n .

При введении перекрестной корреляции значения каждого собы-тия за счет введенных определенных связей будут изменяться либо в положительную, либо в отрицательную сторону, корректируя тем самым вероятности рассматриваемых событий. С целью будущего со-ответствия модели реальным условиям в модель могут быть введены элементы случайности.

Сущность методов экспертных оценок для разра-ботки прогнозов состоит в определении согласованности мнений экспертов по перспективным направлениям развития объекта прог-нозирования, сформулированным ранее отдельными специалистами, а также в оценке аспектов развития объекта, которая не может быть определена другими методами (например, аналитическим расчетом, экспериментом и т.д.).

I. Создание групп. Для организации проведения экспертных оценок создаются рабочие группы, в функции которых входят проведение опроса, обработка материалов и анализ результатов коллективной экспертной оценки. Рабочая группа назначает экспертов, которые дают ответы на поставленные вопросы, касающиеся перспектив раз-вития данной отрасли. Количество экспертов, привлекаемых для раз-работки прогноза, может колебаться от 10 до 150 человек, в зави-симости от сложности объекта.

II. Формулирование глобальной цели системы. Перед тем, как организовать опрос экспертов, не-обходимо уточнить основные направления развития объекта, а также составить матрицу, отражающую генеральную цель, подцели и сред-ства их достижения. При этом в ходе предварительного анализа совместно с группой специалистов определяются наиболее важные цели и подцели для решения поставленной задачи. Под средствами достижения цели понимаются направления научных исследований и разработок, результаты которых могут быть использованы для дости-жения цели. При этом направления научных исследований и разрабо-ток не должны пересекаться друг с другом.

III. Разработка анкеты. Заключается в раз-работке вопросов, которые будут предложены экспертам. Форма воп-роса может быть разработана в виде таблиц, но содержание их долж-но определяться спецификой прогнозируемого объекта или отрасли. При этом вопросы должны быть составлены по определенной структур-но-иерархической схеме, т.е. от широких вопросов к узким, от сложных к простым.

При проведении опроса экспертов необходимо обес-печить однозначность понимания отдельных вопросов, а также неза-висимость суждений экспертов.

IV. Расчёт экспертных оценок. Необходимо провести обработку материалов экс-пертных оценок, которые характеризуют обобщенное мнение и сте-пень согласованности индивидуальных оценок экспертов. Обработка данных оценок экспертов служит исходным материалом для синтеза прогнозных гипотез и вариантов развития отрасли.

Окончательная количественная оценка определяется с помощью четырех основных методов экспертных оценок и множества их разновидностей:

1)метод простой ранжировки (или метод предпочтения);

2)метод задания весовых коэффициентов;

3)метод парных сравнений;

4)метод последовательных сравнений.

Метод простой ранжировки заключается в том, что каждого эксперта просят расположить признаки в порядке предпочтения. Цифрой один обозначается наиболее важный признак, цифрой два - следующий за ним по важности и т.д. полученные данные сводятся в следующую таблицу.

Таблица 2.1 Экспертные оценки признаков (направлений исследований)

Порядок предпочтения данного признака перед другими.

Затем с помощью методов математической статистики получают обобщенное мнение экспертов. Определяется средний ранг, среднее статистическое значение S j j-го признака:

где m kj - количество экспертов, оценивающих j-й признак (m k m);

i - номер эксперта; i = 1,…,m;

j - номер признака, j = 1,2,…,n.

Определяется средний ранг каждого признака. Чем меньше величина S j , тем больше важность этого признака.

Для того чтобы можно было сказать, случайно ли распределение рангов или имеется согласованность в мнениях экспертов, производится вычисление коэффициента конкордации , введенного М. Кендаллом.

Определяется средний ранг совокупности признаков:

Вычисляется отклонение d j среднего ранга j-го признака от среднего ранга совокупности:

Определяется число одинаковых рангов, назначенных экспертами j-му признаку - t q .

Определяется количество групп одинаковых рангов - Q. Определяется коэффициент конкордации по формуле:

,(2.4)

,(2.5)

Коэффициент может принимать значения в пределах от 0 до 1. При полной согласованности мнений экспертов коэффициент конкордации равен единице при полном разногласии - нулю. Наиболее реальным является случай частичной согласованности мнений экспертов.

По мере увеличения согласованности мнений экспертов коэффициент конкордации возрастает и в пределе стремится к единице. Однако даже если он равен или близок к нулю, не всегда имеет место полное разногласие. Среди экспертов могут быть группы с хорошо согласованными мнениями, но мнения эти - противоположны и в общей массе нейтрализуют друг друга. В таком случае следует проделать кластерный или комбинированный анализ для выявления этих групп.

Достоинства метода простой ранжировки:

1) сравнительная простота процедуры получения оценок;

2) меньшее число экспертов по сравнению с другими методами при оценке одного и того же набора признаков.

Недостаток же его в том, что:

1) заведомо считают распределение оценок равномерным;

2) уменьшение важности признаков предполагается также равномерным, в то время как на практике этого не бывает.

Метод задания весовых коэффициентов заключается в присвоении всем признакам весовых коэффициентов. Весовые коэффициенты могут быть проставлены двумя способами:

1) всем признакам назначают весовые коэффициенты так, чтобы суммы коэффициентов была равна какому-то фиксированному числу (например, единице, десяти или ста);

2) наиболее важному из всех признаков придают весовой коэффициент, равный какому-то фиксированному числу, а всем остальным - коэффициенты, равные долям этого числа.

Обобщенное мнение экспертов также получаем с помощью методов математической статистики по формулам (2.1 - 2.5).

Метод последовательных сравнений заключается в следующем:

1) эксперт упорядочивает все признаки в порядке уменьшения их значимости: А 1 > A 2 >…> A n ;

2) присваивает первому признаку значение, равное единице: A 1 =1, остальным же признакам назначает весовые коэффициенты в долях единицы;

3) сравнивает значение первого признака с суммой всех последующих.

Возможны три варианта:

A 1 >A 2 + A 3 + … + A n

A 1 = A 2 + A 3 + … + A n

A 1 < A 2 + A 3 + …+ A n

Эксперт выбирает наиболее соответствующий, по его мнению, вариант и приводит в соответствие с ним оценку первого события;

4) сравнивает значение первого признака с суммой всех последующих за вычетом самого последнего признака.

Приводит оценку первого признака в соответствие с выбранным из трех вариантов неравенством:

A 1 > A 2 + A 3 + … + A n-1

A 1 = A 2 + A 3 + … + A n-1

A 1 < A 2 + A 3 + … + A n-1

5) процедура повторяется до сравнения A 1 с A 2 + A 3.

После того как эксперт уточнил оценку первого признака в соответствии с выбранным им неравенством из трех возможных:

A 1 > A 2 + A 3

A 1 < A 2 + A 3

он переходит к уточнению оценки второго признака A 2 по той же схеме, что и в случае первого, т.е. сравнивается оценка второго признака с суммой последующих.

Преимущество его состоит в том, что эксперт в процессе оценивания признаков сам анализирует свои оценки. Вместо назначения коэффициентов возникает творческий процесс создания этих коэффициентов.

Недостатки метода таковы:

1) сложность его; неподготовленный эксперт будет с трудом справляться с этой процедурой; вместо того, чтобы уточнять свои первоначальные оценки, он будет путаться в них;

2) громоздкость; на оценку одного и того же набора признаков он требует в четыре раза больше операций, чем метод простой ранжировки (другими словами, для одной и той же работы нужно в четыре раза больше экспертов).

Метод парных сравнений

Согласно ему все признаки попарно сравниваются между собой. На основании парных сравнений путем дальнейшей обработки находятся затем оценки каждого признака.

Чтобы эксперту было удобнее проводить сравнения, признаки (A,B,C,…N) заносятся в таблицу и по горизонтали и по вертикали.

Эксперт заполняет клетки такой таблицы. Сравнение признака самого с собой дает единицу. В первой клетке эксперт пишет единицу, во второй - результат сравнения первого признака со вторым, в третьей - результат сравнения первого признака с третьим и т.д. Переходя ко второй строке, эксперт записывает в первой клетке результат сравнения второго признака с первым, во втором - единицу, в третьей - сравнение второго признака с третьим и т.д.

Половина таблицы, расположенная выше диагонали, служит отражением нижней половины. Чтобы не вносить путаницу, не провоцировать эксперта вычислять одну половину таблицы по другой, чтобы уменьшить число операций, целесообразно заполнять только одну половину таблицы (выше или ниже диагонали). Таким образом, ответы экспертов будут представлены в виде следующей матрицы:

После ряда математических преобразований мы получаем оценки каждого признака А 1 , А 2 , … ,А n с точки зрения данного эксперта. Суммарные оценки признаков получаются путем идентичной обработки суммарной матрицы, каждый элемент которой есть сумма сравнений признаков, данных всеми экспертами.

Суммарная матрица имеет вид

m - число экспертов, оценивающих данный набор признаков;

- оценки соответственно 1, 2, …, j, …, m экспертов;

Суммарные оценки, данные всеми экспертами.

Определяя дисперсию суммарной матрицы и сравнивая её с максимально возможной дисперсией матрицы с таким же числом элементов, можно определить согласованность мнений экспертов. Чем ближе дисперсия суммарной матрицы к максимально возможной дисперсии, тем выше согласованность мнений. Таким образом, метод парных сравнений позволяет провести строгий, статистически обоснованный анализ согласованности мнений экспертов, выявить, случайны или нет полученные оценки. Несомненно, процедура метода парных сравнений сложнее метода простой ранжировки, но проще метода последовательных сравнений.

Число экспертов, требуемое для оценки определенной совокупности признаков методом парных сравнений, в два раза больше, чем при использовании метода простой ранжировки, и в два раза меньше, чем при методе последовательных сравнений.

В настоящее время во многих методах проведения экспертных оценок предлагается в качестве показателя компетентности эксперта коэффициент:

, (2.6)

где- коэффициент компетентности эксперта;

Коэффициент степени знакомства эксперта с обсуждаемой проблемой;

Коэффициент аргументированности.

Коэффициент степени знакомства с направлением исследований определяется путем самооценки эксперта по десятибалльной шкале. Значения баллов для самооценки следующие:

0 - эксперт не знаком с вопросом;

1,2,3 - эксперт плохо знаком с вопросом, но вопрос входит в сферу его интересов;

4,5,6 - эксперт удовлетворительно знаком с вопросом, не принимает непосредственного участия в практическом решении вопроса;

7,8,9 - эксперт хорошо знаком с вопросом, участвует в практическом решении вопроса;

10 - вопрос входит в круг узкой специализации эксперта.

Эксперту предлагается самому оценить степень своего знакомства с вопросом и подчеркнуть соответствующий балл. Затем этот балл умножается на 0,1, и получаем коэффициент.

Коэффициент аргументированности учитывает структуру аргументов, послуживших эксперту основанием для определенной оценки. Коэффициент аргументированности предлагается определить в соответствии с таблицей 2.2 путем суммирования значений, отмеченных экспертом в клетках этой таблицы.

Определив коэффициент компетентности, умножают на него значение оценок экспертов.

Таблица 2.2 Значения коэффициента аргументированности

Экспертные методы используются при решении прогностических, аналитических и проектных задач, связанных с неформализуемостью и отсутствием определенности в представлениях об организационно-экономических объектах.

Сущность данного метода: проведение экспертами интуитивно-логического анализа проблемы с качественной оценкой суждения и формальной обработкой результатов.

Особенности метода экспертных оценок: необходимость научно-обоснованной организации экспертизы, применение количественных методов для оценки качественных суждений экспертов.

Экспертный метод может использоваться при определении прогнозов развития объектов; при определении целей и задач, альтернативном распределении ресурсов; при принятии решений в условиях неопределенности и риска.

1-й этап использования данного метода – формирование группы экспертов. Свойства, которые необходимы специалисту для включения его в экспертную группу:

– компетентность (степень квалификации в определенной области знаний);

– креативность (способность решать творческие задачи);

– аналитичность и широта мышления;

– конструктивность (способность формировать конкретные предложения);

– самокритичность эксперта;

Отношение к экспертизе.

Для формирования экспертных групп могут использовать способ тестирования, документационный и другие методы.

Способ тестирования состоит в том, что на основе разработанных тестов проходят обследование возможные кандидаты, и по результатам ответов формируется группа.

Документационный способ – отбор экспертов по их объективным характеристикам, которые содержатся в их личных документах (стаж работы, должность, ученая степень, количество публикаций и др.).

Способ назначения – определение руководителем группы экспертов из числа сотрудников. Главный недостаток способа: мнение сотрудников может быть согласованным, но ошибочным, выражающим официальную позицию организации в данном вопросе («эффект школы»). Результаты экспертизы в этом случае представляют интерес в основном лишь для внутреннего пользования.

2-й этап применения экспертного метода – проведение экспертизы.

Данный этап начинается с выбора способа опроса экспертов. Различают индивидуальный, групповой и дельфийский методы.

При индивидуальном способе от каждого эксперта посредством анкетирования или интервьюирования получают оценки, не зависимые от мнениях других. Затем после их обобщения и обработки определяют общую, результирующую оценку. Индивидуальную экспертизу рационально использовать при необходимости выработки точечного прогноза состояния объекта, при ранжировании совокупности объектов и в других случаях, когда важнейшими качествами эксперта выступают его компетентность и конструктивность.

Групповой способ предусматривает получение суммарной оценки или общего решения сразу от всех экспертов путем совместного обсуждения. Его использование целесообразно при поиске нетрадиционных решений, при оценке характеристик малоизученных объектов, т. е. при необходимости получения творческого решения. Групповой опрос может осуществляться посредством проведения дискуссий, совещаний, конференций, «мозгового штурма».

Метод Дельфи синтезирует ряд положительных черт индивидуальной и групповой экспертиз. Эксперты независимо друг от друга высказывают свое мнение в письменной форме. Важнейшая составляющая метода – тщательно разработанные программы анкетирования, осуществляемого в несколько туров, и регулирование вопросов на каждом последующем туре. По окончании каждого тура группа организаторов экспертизы анализирует полученные ответы, обобщает их и готовит по результатам тура справку-бюллетень, с текстом которой знакомятся все эксперты. При этом информация в справке анонимна. При повторном опросе эксперты получают вопросы, уточняющие первоначальные ответы и сформулированные выводы с учетом итогов предыдущего тура. В третьем туре экспертам сообщают, по каких пунктам имеется единое мнение, экспертов, высказавших отличное от других мнение, просят его обосновать. Четвертый, чаще всего последний, тур повторяет процедуру третьего. Таким образом, область расхождения мнений сужается и вырабатывается общее решение.

Достоинство дельфийского метода – он уменьшает или полностью устраняет такие психологические факторы, как показная убежденность, нежелание отказаться от публичного высказывания своего мнения, влияние авторитета.

3-й этап экспертных методов – обработка результатов опроса.

Для обеспечения возможности формальной обработки результатов экспертизы необходима численная система, описывающая свойства объектов и отношения между ними с помощью количественных параметров (различные шкалы наименований (классификации), порядков, интервалов, отношений, разностей).

Шкала наименований используется для описания принадлежности объекта к определенным классам. Шкала порядка – для измерения упорядочения объектов по одному или ряду признаков (шкала рангов). Шкала интервалов – для отображения величины различий между свойствами объектов. Шкала отношений – для отражения отношения свойств объектов, например, их весомости. Шкала разностей – при необходимости определить, насколько один объект превосходит другой по одному или нескольким признакам.

Выбор шкалы определяется задачами экспертизы, особенностями объекта, возможностями группы.

При обработке результатов экспертизы важное значение имеет выбор метода измерения. Наиболее употребительные методы: ранжирование, парное сравнение, непосредственная оценка, последовательное сравнение.

Регламент должен отвечать следующим требованиям: обеспечить достаточное разнообразие формулировок; единство структуры формулировки (например, формулировка должна последовательно отвечать на вопросы: что необходимо? над чем (с чем)? для чего?). Полученные формулировки должны достаточно полно отражать важнейшее их содержание, т. е. обладать значительной емкостью; формулирование должно происходить таким образом, чтобы исключить разночтение.

Проблемы совершенствования экспертных технологий связаны с проработкой следующих направлений: формирование экспертной комиссии, организация и проведение экспертиз на основе использования современных методов, использование многокритериальных оценок при интерпретации результатов.